终身会员
搜索
    上传资料 赚现金

    精品试题沪科版九年级数学下册第24章圆专项练习试卷(精选含详解)

    立即下载
    加入资料篮
    精品试题沪科版九年级数学下册第24章圆专项练习试卷(精选含详解)第1页
    精品试题沪科版九年级数学下册第24章圆专项练习试卷(精选含详解)第2页
    精品试题沪科版九年级数学下册第24章圆专项练习试卷(精选含详解)第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试一课一练

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共28页。


    沪科版九年级数学下册第24章圆专项练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形

    C..直角三角形 D..等腰直角三角形

    2、如图,都是上的点,,垂足为,若,则的度数为(   

    A. B. C. D.

    3、平面直角坐标系中点关于原点对称的点的坐标是(   

    A. B. C. D.

    4、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(     

    A.60 B.90 C.120 D.180

    5、下列图形中,可以看作是中心对称图形的是(   

    A. B.

    C. D.

    6、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(  

    A.3 B.2 C.1 D.

    7、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(   

    A.25° B.80° C.130° D.100°

    8、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    9、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(   

    A. B.

    C. D.

    10、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. 

    C.  D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,正方形ABCD是边长为2,点E、FAD边上的两个动点,且AE=DF,连接BECFBE与对角线AC交于点G,连接DGCF于点H,连接BH,则BH的最小值为_______.

    2、AB的直径,点C上,,点P在线段OB上运动.设,则x的取值范围是________.

    3、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.

    4、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.

    5、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)

    三、解答题(5小题,每小题10分,共计50分)

    1、已知:如图,△ABC为锐角三角形,ABAC

    求作:一点P,使得∠APC=∠BAC

    作法:①以点A为圆心, AB长为半径画圆;

    ②以点B为圆心,BC长为半径画弧,交⊙A于点CD两点;

    ③连接DA并延长交⊙A于点P

    P即为所求

    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

    (2)完成下面的证明

    证明:连接PCBD

    ABAC

    ∴点C在⊙A

    BCBD

    ∴∠_________=∠_________

    ∴∠BACCAD

    ∵点DP在⊙A上,

    ∴∠CPDCAD(______________________) (填推理的依据)

    ∴∠APC=∠BAC

    2、如图,在△ABC中,∠ACB=90°,AC=BCDAB边上一点(与AB不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DEBE

    (1)求证:△ACD≌△BCE

    (2)若BE=5,DE=13,求AB的长

    3、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.

    (1)如图2,当t=4 时,∠AOC=     ,∠BOE=     ,∠BOE﹣∠AOC=    

    (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;

    (3)在旋转过程中,是否存在某个时刻,使得射线 OAOCOD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.

    4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C

    (1)求证:PB是⊙O的切线;

    (2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.

    5、如图,四边形ABCD内接于⊙OAC是直径,点C是劣弧BD的中点.

    (1)求证:

    (2)若,求BD

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.

    【详解】

    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,

    ∴∠ECF=90°,CECF

    ∴△CEF是等腰直角三角形,

    故选:D

    【点睛】

    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.

    2、B

    【分析】

    连接OC.根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出

    【详解】

    解:如下图所示,连接OC

    分别是所对的圆周角和圆心角,

    故选:B.

    【点睛】

    本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.

    3、B

    【分析】

    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.

    【详解】

    解:平面直角坐标系中点关于原点对称的点的坐标是

    故选B

    【点睛】

    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.

    4、C

    【分析】

    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.

    【详解】

    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.

    故选C.

    【点睛】

    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.

    5、C

    【分析】

    根据中心对称图形的定义进行逐一判断即可.

    【详解】

    解:A、不是中心对称图形,故此选项不符合题意;

    B、不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,故此选项符合题意;

    D、不是中心对称图形,故此选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:

    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    6、B

    【分析】

    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.

    【详解】

    解:连接OC,如图

    AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,

    故选:B

    【点睛】

    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出

    7、D

    【分析】

    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.

    【详解】

    解:∵四边形ABCD内接于⊙O

    ∴∠B+∠ADC=180°,

    ∵∠ADC=130°,

    ∴∠B=50°,

    由圆周角定理得,∠AOC=2∠B=100°,

    故选:D.

    【点睛】

    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

    8、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    9、A

    【分析】

    设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.

    【详解】

    解:设正六边形的边长为1,当上时,

    上时,延长交于点

    同理:

    为等边三角形,

    上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得:

    由正六边形的对称性可得:上的图象与上的图象是对称的,

    上的图象与上的图象是对称的,

    所以符合题意的是A,

    故选A

    【点睛】

    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.

    10、B

    【详解】

    解:A.是轴对称图形,不是中心对称图形,故不符合题意;

    B.既是轴对称图形,又是中心对称图形,故符合题意;

    C.不是轴对称图形,是中心对称图形,故不符合题意;

    D.是轴对称图形,不是中心对称图形,故不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    二、填空题

    1、##

    【分析】

    延长AGCDM,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接ODOH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.

    【详解】

    解:延长AGCDM,如图1,

    ABCD是正方形,

    AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC

    AD=CD,∠ADB=∠BDCDG=DG

    ∴△ADG≌△DGC

    ∴∠DAM=∠DCFAD=CD,∠ADC=∠ADC

    ∴△ADM≌△CDF

    FD=DMAE=DF

    AE=DMAB=AD,∠ADM=∠BAD=90°,

    ∴△ABE≌△DAM

    ∴∠DAM=∠ABE

    ∵∠DAM+∠BAM=90°,

    ∴∠BAM+∠ABE=90°,即∠AHB=90°,

    ∴点H是以AB为直径的圆上一点.

    如图2,取AB中点O,连接ODOH

    AB=AD=2,OAB中点,

    AO=1=OH

    RtAOD中,OD=

    DHOD-OH

    DH-1,

    DH的最小值为-1,

    故答案为:-1.

    【点睛】

    本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.

    2、

    【分析】

    分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.

    【详解】

    解:当点P与点O重合时,

    OA=OC

    ,即

    当点P与点B重合时,

    AB的直径,

    x的取值范围是

    【点睛】

    此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.

    3、76°或142°

    【分析】

    AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.

    【详解】

    解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,

    ∵Rt△ABC的斜边AB与量角器的直径恰好重合,

    ACBD四点共圆,圆心为点O

    ∴∠BOD=2∠BCD

    ①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,

    连接OD1,则∠BOD1=2∠BCD1=76°;

    ②若BC为等腰三角形的腰时,

    当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,

    连接OD2,则∠BOD2=2∠BCD2=142°,

    当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,

    综上,点D在量角器上对应的度数是76°或142°,

    故答案为:76°或142°.

    【点睛】

    本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.

    4、在⊙A

    【分析】

    先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.

    【详解】

    解:∵点A的坐标为(4,3),

    OA==5,

    ∵半径为5,

    OA=r

    ∴点O在⊙A上.

    故答案为:在⊙A上.

    【点睛】

    本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔dr;当点P在圆上⇔d=r;当点P在圆内⇔dr

    5、9.3

    【分析】

    根据弧长公式进行计算即可,

    【详解】

    解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,

    cm,

    故答案为:

    【点睛】

    本题考查了弧长公式,牢记弧长公式是解题的关键.

    三、解答题

    1、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半

    【分析】

    (1)根据按步骤作图即可;

    (2)根据圆周角定理进行证明即可

    【详解】

    解:(1)如图所示,

    (2)证明:连接PCBD

    ABAC

    ∴点C在⊙A

    BCBD

    ∴∠BAC=∠BAD

    ∴∠BACCAD

    ∵点DP在⊙A上,

    ∴∠CPDCAD圆周角定理) (填推理的依据)

    ∴∠APC=∠BAC

    故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半

    【点睛】

    本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.

    2、(1)见解析;(2)17

    【分析】

    (1)由旋转的性质可得CDCE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE

    (2)由∠ACB=90°,ACBC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BEAD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.

    【详解】

    解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE

    CDCE,∠DCE=90°=∠ACB

    ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE

    在△ACD和△BCE中,

    ∴△ACD≌△BCESAS);

    (2)∵∠ACB=90°,ACBC

    ∴∠CAB=∠CBA=45°,

    ∵△ACD≌△BCE

    BEAD=5,∠CBE=∠CAD=45°,

    ∴∠ABE=∠ABC+∠CBE=90°,

    AB=AD+BD=17.

    【点睛】

    本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.

    3、

    (1)30°,70°,40°;

    (2)∠AOC-∠BOE=40°,理由见解析;

    (3)t 的取值为5或20或62

    【分析】

    (1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;

    (2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;

    (3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.

    (1)

    解:∵∠EOC=130°,∠AOB=∠BOE=90°,

    ∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,

    t=4时,旋转角4×5°=20°,

    ∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,

    BOE-∠AOC=70°-30°=40°,

    故答案为:30°,70°,40°;

    (2)

    解:∠AOC-∠BOE=40°,理由为:

    设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,

    AOC=x-50°,∠BOE=x-90°,

    ∴∠AOC-∠BOE=x-50°)-(x-90°)=40°;

    (3)

    解:存在,

    ①当OA为∠DOC的平分线时,旋转角5t =DOC=25,

    t=5;

    ②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,

    t=20;

    ③当OD为∠COA的平分线时,360-5t=∠DOC=50,

    t=62,

    综上,满足条件的t 的取值为5或20或62.

    【点睛】

    本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.

    4、

    (1)见解析

    (2)

    【分析】

    (1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;

    (2)证明,得出对应边成比例,即可求出的长.

    (1)

    证明:连接,如图所示:

    的直径,

    的切线;

    (2)

    解:的半径为

    【点睛】

    本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.

    5、(1)见详解;(2)

    【分析】

    (1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;

    (2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.

    【详解】

    (1)证明:∵AC是直径,点C是劣弧BD的中点,

    AC垂直平分BD

    (2)解:∵

    ∴△ABD是等边三角形,

    【点睛】

    本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共29页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共30页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map