终身会员
搜索
    上传资料 赚现金

    精品试卷沪科版九年级数学下册第24章圆专项测评练习题(精选含解析)

    立即下载
    加入资料篮
    精品试卷沪科版九年级数学下册第24章圆专项测评练习题(精选含解析)第1页
    精品试卷沪科版九年级数学下册第24章圆专项测评练习题(精选含解析)第2页
    精品试卷沪科版九年级数学下册第24章圆专项测评练习题(精选含解析)第3页
    还剩30页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试同步达标检测题

    展开

    这是一份初中数学第24章 圆综合与测试同步达标检测题,共33页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆专项测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(   

    A.64° B.52° C.42° D.36°

    2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是     

    A.2个 B.3个 C.4个 D.5个

    4、下列四个图案中,是中心对称图形但不是轴对称图形的是(   

    A. B. C. D.

    5、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(    

    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2

    6、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(   

    A. B. C. D.

    7、下列语句判断正确的是(  )

    A.等边三角形是轴对称图形,但不是中心对称图形

    B.等边三角形既是轴对称图形,又是中心对称图形

    C.等边三角形是中心对称图形,但不是轴对称图形

    D.等边三角形既不是轴对称图形,也不是中心对称图形

    8、下面的图形中既是轴对称图形又是中心对称图形的是(   

    A. B. C. D.

    9、下列图形中,可以看作是中心对称图形的是(   

    A. B.

    C. D.

    10、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(   

    A.50° B.60° C.40° D.30°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .

    2、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    3、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)

    4、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    5、如图,以面积为20cm2RtABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则ACBC=_____.

    三、解答题(5小题,每小题10分,共计50分)

    1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.

    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.

    由圆周角定理,可以得到以下推论:推论1  90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.

    求证:线段AB是⊙O的直径.

    请你结合图①写出推论1的证明过程.

    (深入探究)如图②,点ABCD均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为         

    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点EBC的中点,连结DE. 若AB,则DE的长为          

    2、如图,在中,OAC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为DAC的另一个交点为E

    (1)求证:BO平分

    (2)若,求BO的长.

    3、如图,抛物线y=-x+2与x轴负半轴交于点A,与y轴交于点B

    (1)求AB两点的坐标;

    (2)如图1,点Cy轴右侧的抛物线上,且ACBC,求点C的坐标;

    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点ABO的对应点分别是点DEF),DE两点刚好在抛物线上.

    ①求点F的坐标;

    ②直接写出点P的坐标.

     

    4、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接

    (1)如图1,当三点共线时,连接,若,求的长;

    (2)如图2,取的中点,连接,猜想存在的数量关系,并证明你的猜想;

    (3)如图3,在(2)的条件下,连接交于点.若,请直接写出的值.

    5、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.

    (1)求证:CE是⊙O的切线;

    (2)若AB的长为6,求CE的长.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.

    【详解】

    解:∵CC′∥AB

    ∴∠ACC′=∠CAB=64°

    ∵△ABC在平面内绕点A旋转到△ABC′的位置,

    ∴∠CAC′等于旋转角,AC=AC′,

    ∴∠ACC′=∠ACC=64°,

    ∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,

    ∴旋转角为52°.

    故选:B

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    2、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    3、A

    【分析】

    根据轴对称图形与中心对称图形的概念进行判断.

    【详解】

    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;

    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;

    共2个既是轴对称图形又是中心对称图形.

    故选:A.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.

    4、D

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是轴对称图形,是中心对称图形,故此选项不符合题意;

    D、不是轴对称图形,是中心对称图形,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    5、A

    【分析】

    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.

    【详解】

    解:∵⊙O的半径为4,点P 在⊙O外部,

    OP需要满足的条件是OP>4,

    故选:A

    【点睛】

    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.

    6、A

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在Rt△ABC中,AC=ABtanB=3×

    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    7、A

    【分析】

    根据等边三角形的对称性判断即可.

    【详解】

    ∵等边三角形是轴对称图形,但不是中心对称图形,

    BCD都不符合题意;

    故选:A

    【点睛】

    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.

    8、A

    【详解】

    解:A、既是轴对称图形又是中心对称图形,此项符合题意;

    B、是中心对称图形,不是轴对称图形,此项不符题意;

    C、是轴对称图形,不是中心对称图形,此项不符题意;

    D、是轴对称图形,不是中心对称图形,此项不符题意;

    故选:A.

    【点睛】

    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.

    9、C

    【分析】

    根据中心对称图形的定义进行逐一判断即可.

    【详解】

    解:A、不是中心对称图形,故此选项不符合题意;

    B、不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,故此选项符合题意;

    D、不是中心对称图形,故此选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:

    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    10、A

    【分析】

    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.

    【详解】

    解: 将△OAB绕点O逆时针旋转80°得到△OCD

    A的度数为110°,∠D的度数为40°,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.

    二、填空题

    1、∠ABC

    【分析】

    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.

    【详解】

    解:∵四边形ABCD内接于圆,

    ECD延长线上一点,

    故答案为:

    【点睛】

    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.

    2、35°

    【分析】

    根据旋转的性质可得∠AOD=∠BOC=30°,AODO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

    【详解】

    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,

    ∴∠AOD=∠BOC=30°,AODO

    ∵∠AOC=100°,

    ∴∠BOD=100°−30°×2=40°,

    ADO=∠A(180°−∠AOD)=(180°−30°)=75°,

    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.

    故答案为:35°.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.

    3、9.3

    【分析】

    根据弧长公式进行计算即可,

    【详解】

    解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,

    cm,

    故答案为:

    【点睛】

    本题考查了弧长公式,牢记弧长公式是解题的关键.

    4、35°

    【分析】

    利用圆周角定理求出所求角度数即可.

    【详解】

    解:都对,且

    故答案为:

    【点睛】

    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.

    5、##

    【分析】

    连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.

    【详解】

    解:如图,连接,延长交于点,连接

    都是的直径,

    中,

    平分,且

    如图,作,交于点

    中,

    ,则

    解得(不符题意,舍去),

    故答案为:

    【点睛】

    本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.

    三、解答题

    1、【推论证明】见解析;【深入探究】;【拓展应用】

    【分析】

    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;

    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;

    拓展应用:连接AE,作CFDEDE于点F,首先根据等边三角形三线合一的性质求出,然后证明出AECD四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.

    【详解】

    解:推论证明:∵

    ABO三点共线,

    又∵点O是圆心,

    AB是⊙O的直径;

    深入探究:如图所示,连接AB

    ∵∠ACB=90°

    AB是⊙O的直径

    ∵∠ACD=60°

    ∴在中,

    拓展应用:如图所示,连接AE,作CFDEDE于点F

    ∵△ABC是等边三角形,点EBC的中点

    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD

    ∴点AECD四点都在以AC为直径的圆上,

    CFDE

    是等腰直角三角形

    ,解得:

    ∴在中,

    【点睛】

    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.

    2、(1)见解析;(2)2

    【分析】

    (1)连接OD,由AB相切得,由HL定理证明由全等三角形的性质得,即可得证;

    (2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.

    【详解】

    (1)

    如图,连接OD

    AB相切,

    中,

    平分

    (2)设的半径为,则

    中,

    解得:

    中,,即

    中,

    【点睛】

    本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.

    3、(1)A(-1,0),B(0,2);(2)点C的坐标();(3)①求点F的坐标(1,2);②点P的坐标(

    【分析】

    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;

    (2)设C的坐标为(x,-x+2),根据ACBC,得到,令t=-x,解方程即可;

    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据BE都在抛物线上,则BE是对称点,从而确定点P在抛物线的对称轴上,点FBE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;

    ②根据BE=3,∠BPE=90°,PB=PE,确定PBE的距离,即可写出点P的坐标.

    【详解】

    (1)令x=0,得y=2,

    ∴点B的坐标为B(0,2);

    y=0,得-x+2=0,

    解得

    ∵点Ax轴的负半轴;

    A点的坐标(-1,0);

    (2)设C的坐标为(x,-x+2),

    ACBCA(-1,0),B(0,2),

    A(-1,0),B(0,2),

    t=-x

    整理,得

    解得

    ∵点Cy轴右侧的抛物线上,

    此时y=

    ∴点C的坐标();

    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,

    BE都在抛物线上,

    BE是对称点,

    ∴点P在抛物线的对称轴上,点FBE上,且BEx轴,

    ∵抛物线的对称轴为直线x=B(0,2),

    ∴点E(3,2),BE=3,

    EF=BO=2,

    BF=1,

    ∴点F的坐标为(1,2);

    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N

    BE=3,

    BM=

    ∵∠BPE=90°,PB=PE

    PM=BM=

    PM=BM=

    PN=2-=

    ∴点P的坐标为().

    【点睛】

    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.

    4、(1);(2);证明见解析;(3)

    【分析】

    (1)过点于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,勾股定理即可求解;

    (2)延长,使得,连接,过点,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得

    (3)过点于点,过点,连接,交于点,过点,交于点,过点于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值

    【详解】

    (1)过点于点,如图

    绕点顺时针旋转120°,得到

    是等边三角形

    中,

    (2)如图,延长,使得,连接,过点,交于点

    的中点

    四边形是平行四边形

    绕点顺时针旋转120°,得到

    是等边三角形

    是等边三角形

    ,则,

    ,

    是等边三角形

    (3) 如图,过点于点,过点,连接,交于点,过点,交于点,过点于点

    四点共圆

    由(2)可知

    绕点顺时针旋转120°,得到

    的中点,

    的中位线

    是等腰直角三角形

    四边形是矩形

    中,

    ,

    中,

    【点睛】

    本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.

    5、(1)见解析;(2)3

    【分析】

    (1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;

    (2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.

    【详解】

    解:(1)证明:如图连接OC、OB

    是等边三角形

     

     

    又 ∵

    与⊙O相切;

     (2)∵四边形ABCD是⊙O的内接四边形,

    D的中点,

       

    【点睛】

    本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中第24章 圆综合与测试课时训练:

    这是一份初中第24章 圆综合与测试课时训练,共33页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共33页。试卷主要包含了下列判断正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map