终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪科版九年级数学下册第24章圆定向训练试卷(精选)

    立即下载
    加入资料篮
    精品试题沪科版九年级数学下册第24章圆定向训练试卷(精选)第1页
    精品试题沪科版九年级数学下册第24章圆定向训练试卷(精选)第2页
    精品试题沪科版九年级数学下册第24章圆定向训练试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试测试题

    展开

    这是一份2020-2021学年第24章 圆综合与测试测试题,共29页。试卷主要包含了在圆内接四边形ABCD中,∠A,等边三角形等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的直径,弦,垂足为,若,则    A.5 B.8 C.9 D.102、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断3、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.4、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.5、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(    A. B. C. D.6、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°7、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是(      A.2个 B.3个 C.4个 D.5个8、如图,ABCD是⊙O的弦,且,若,则的度数为(    A.30° B.40° C.45° D.60°9、下列图形中,是中心对称图形,但不是轴对称图形的是(    A. B. C. D.10、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )A.80° B.70° C.60° D.50°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°2、在平面直角坐标系中,已知点与点关于原点对称,则________,________.3、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OBOC,若弦BC的长度为,则∠BAC=________度.4、如图,正方形ABCD的边长为1,⊙O经过点CCM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边ABAD于点GHBDCGCH分别交于点EF,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:HD=2BG;②∠GCH=45°;③HFEG四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).5、一块直角三角板的30°角的顶点A落在上,两边分别交BC两点,若弦BC长为4,则的半径为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.2、如图,四边形ABCD内接于⊙OAC是直径,点C是劣弧BD的中点.(1)求证:(2)若,求BD3、如图,在等边中,DBC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CFBFAF之间的数量关系,并证明.4、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.5、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG(1)如图,若点AED第一次在同一直线上,BGCE交于点H,连接BE①求证:BE平分∠AEC②取BC的中点P,连接PH,求证:PHCG③若BC=2AB=2,求BG的长.(2)若点AED第二次在同一直线上,BC=2AB=4,直接写出点DBG的距离. -参考答案-一、单选题1、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接的直径,弦的半径为,则中,解得故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.3、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.4、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.5、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形由旋转性质可知:中,有勾股定理可知:阴影部分的面积=扇形扇形 故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.6、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.7、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.8、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.9、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.10、A【分析】根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到∴∠ADC=∠DAC∵点ADE在同一条直线上,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.二、填空题1、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PAPB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.2、2    2    【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出ab即可求得答案.【详解】解:∵点和点关于原点对称,故答案为:2;2.【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.3、60【分析】RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OEBCEOEBCBE=EC=,∠BOE=∠COEOE=1,OB=2OE∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.4、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCDGM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,CM=CDCH=CH∴△CMH≌△CDHHD=HM,∠HCM=∠HCD同理可证,∴GM=GB,∠GCB=∠GCMGB+DH=GH,无法确定HD=2BG故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDHBD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC=∠DHF +∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,HFEG四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,=1=,∠GAH=90°,AC=GH的中点P,连接PAGH=2PA=∴当PA取最小值时,有最大值,连接PCACPA+PCACPAAC- PC∴当PC最大时,PA最小,∵直径是圆中最大的弦,PC=1时,PA最小,∴当APC三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-∴四边形CGAH面积的最大值为2∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.5、4【分析】连接OBOC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.【详解】连接OBOC,如图所示:∵∠A=30°,∴∠BOC=60°,OB=OC∴△BOC是等边三角形,,即⊙O的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.三、解答题1、(1)65°(2)【分析】(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.【小题1】解:在RtABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE∴∠EBF=∠ABC=50°,AB=BF∴∠BAF=∠BFA=(180°-50°)=65°;【小题2】∵∠C=90°,AC=8,BC=6,AB=10,∵将△ABC绕着点B逆时针旋转得到△FBEBE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.2、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,AC垂直平分BD(2)解:∵∴△ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.3、(1)20°;(2);(3)AF= CF+BF,理由见解析【分析】(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明FCG三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)∵△ABC是等边三角形,AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,AC=AEAB=AE(3)AF= CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACGAF=AG,∠FAG=60°,∠ACG=∠ABFBF=CG在△AEF和△ACF中,∴△AEF≌△ACFSAS),∴∠AFE=∠AFC∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,FCG三点共线,∴△AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.4、(1)作图见解析;(2)【分析】(1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.【详解】解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;(2)如图所示,连接CDOD由题意,AD为⊙O的切线,OCAC,且OC为半径,AC为⊙O的切线,AC=AD∴∠ACD=∠ADCCD=BD∴∠B=∠DCB∵∠ADC=∠B+∠BCD∴∠ACD=∠ADC=2∠DCB∵∠ACB=90°,∴∠ACD+∠DCB=90°,即:3∠DCB=90°,∴∠DCB=30°,OC=OD∴∠DCB=∠ODC=30°,∴∠COD=180°-2×30°=120°,∵∠DCB=∠B=30°,∴在RtABC中,∠BAC=60°,AO平分∠BAC∴∠CAO=∠DAO=30°,∴在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.5、(1)①见解析;②见解析;③(2)【分析】(1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;②如图1,过点的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;③如图2,过点的垂线,解直角三角形即可得到结论.(2)如图3,连接,过的延长线于的延长线于,根据旋转的性质得到,解直角三角形得到,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形绕着点按顺时针方向旋转得到矩形平分②证明:如图1,过点的垂线平分即点中点,中点,③解:如图2,过点的垂线(2)解:如图3,连接,过的延长线于的延长线于将矩形绕着点按顺时针方向旋转得到矩形第二次在同一直线上,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共33页。

    初中沪科版第24章 圆综合与测试精练:

    这是一份初中沪科版第24章 圆综合与测试精练,共24页。

    沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map