2021学年第24章 圆综合与测试巩固练习
展开这是一份2021学年第24章 圆综合与测试巩固练习,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
2、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )
A. B. C. D.
3、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3π B.6π C.12π D.18π
5、如图,AB,CD是⊙O的弦,且,若,则的度数为( )
A.30° B.40° C.45° D.60°
6、下列图案中既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
7、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
8、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
9、下列图形中,是中心对称图形也是轴对称图形的是( )
A. B. C. D.
10、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.
2、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.
3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.
4、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.
5、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.
(1)求的度数;
(2)若,且,求DF的长.
2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
(1)当直线l在如图①的位置时
①请直接写出与之间的数量关系______.
②请直接写出线段BH,EH,CH之间的数量关系______.
(2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
(3)已知,在直线l旋转过程中当时,请直接写出EH的长.
3、在等边中,将线段AB绕点A顺时针旋转得到线段AD.
(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
(2)在(1)的条件下连接BD,交CA的延长线于点F.
①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.
4、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:
(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.
(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.
(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.
5、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 EN,AM、CM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.
-参考答案-
一、单选题
1、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
2、B
【分析】
阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
【详解】
解:由图可知:阴影部分的面积=扇形扇形,
由旋转性质可知:,,
,,
在中,,,,
,,
有勾股定理可知:,
阴影部分的面积=扇形扇形
.
故选:B.
【点睛】
本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
3、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
4、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
5、B
【分析】
由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
【详解】
解:∵,
∴,
∵,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
6、B
【分析】
根据中心对称图形与轴对称图形的概念逐项分析
【详解】
解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;
B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;
C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;
故选B
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.
7、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
8、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
9、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
故选:C.
【点睛】
本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
10、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
二、填空题
1、40°度
【分析】
直接根据圆周角定理即可得出结论.
【详解】
解:与是同弧所对的圆心角与圆周角,,
.
故答案为:.
【点睛】
本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
2、
【分析】
根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.
【详解】
解:如图所示:当点P到如图位置时,的面积最大,
∵、,
∴圆的直径,半径为1,
∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:
此时面积的最大值为:;
如图所示:连接AP,
∵PD切于点D,
∴,
∴,
设点,
在中,,,
∴,
在中,,
∴,
则,
当时,PD取得最小值,
最小值为,
故答案为:①;②.
【点睛】
题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.
3、
【分析】
设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
【详解】
解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
根据题意可得:,
解得:,
故答案是:.
【点睛】
本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
4、2
【分析】
根据扇形的面积公式S=,代入计算即可.
【详解】
解:∵“完美扇形”的周长等于6,
∴半径r为=2,弧长l为2,
这个扇形的面积为:==2.
答案为:2.
【点睛】
本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.
5、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
三、解答题
1、(1)45°;(2)
【分析】
(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;
(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.
【详解】
解:(1)由旋转可知:
,,,,
∴,,.
由三角形内角和定理得,
∴点A,D,F,E共圆.
∴.
(2)连接EB,
∵,
∴.
∵,
∴.
又∵,,
∴.
∴,.
∴.
在中,,,,
∵,
∴.
【点睛】
本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.
2、(1)①;②;(2);证明见解析;(3)或.
【分析】
(1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
(3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
【详解】
解:(1)①
∵CE=BC,四边形ABCD为正方形,
∴BC=CD=CE,
∵CF⊥DE,
∴CF平分∠ECD,
∴∠ECH=∠HCD,
故答案为:∠ECH=∠HCD;
②,过点C作CG⊥BE于G,
∵BC=EC,
∴∠ECG=∠BCG=,
∵∠ECH=∠HCD=,
∴∠GCH=∠ECG+∠ECF=+,
∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
∴CG=HG,
在Rt△GHC中,
∴,
∵GE=,
∴GH=GE+EH=,
∴,
∴,
∴,
故答案是:;
(2),
证明:过点C作交BE于点M,
则,
∴⁰,
∴,
∵,,
∴,,
∴,
∴,
∴,,
∴是等腰直角三角形,
∴,
∵,
∴,
(3)或,
∵,分两种情况,
当∠ABE=90°-15°=75°时,
∵BC=CE,
∴∠CBE=∠CEB=15°,
∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
∵CE=CD,
∴△CDE为等边三角形,
∴DE=CD=AB=2,∠DEC=60°,
∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
∵CF⊥DE,
∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
∴EF=HF=1,
∴HE=,
当∠ABE=90°+15°=105°,
∵BC=CE,∠CBE=∠CEB=15°,
∴∠BCE=180°-∠CBE-∠CEB=150°,
∴∠DCE=360°-∠DCB-∠BCE=120°,
∵CE=BC=CD,CH⊥DE,
∴∠FCE=,
∴∠FEC=180°-∠CFE-∠FCE=30°,
∴CF=,
∴EF=,
∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
∴FH=FE,
∴EH=,
∴或.
【点睛】
本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
3、(1);(2)①见解析;②AE=AF+CE,证明见解析.
【分析】
(1)根据“线段DA的延长线与线段BC相交于点E”可求解;
(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
【详解】
(1)如图:AD只能在锐角∠EAF内旋转符合题意
故α的取值范围为:;
(2)补全图形如下:
(3)AE=AF+CE,
证明:在AE上截取AH=AF,由旋转可得:AB=AD,
∴∠D=∠ABF,
∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠ACB=60°,
∴AD=AC,
∵∠DAF=∠CAH,
∴△AFD≌△AHC,
∴∠AFD=∠AHC,∠D=∠ACH,
∴∠AFB=∠CHE,
∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
∴∠CHE+∠D=∠D+∠HCE=60°,
∴∠CHE=∠HCE,
∴CE=HE,
∴AE=AH+HE=AF+CE.
【点睛】
本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.
4、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);
(2)作边长为2,高为4的平行四边形即可;
(3)根据(1)的结论,作BG边的中线,即可得解.
【详解】
解:(1)如图①中,△ABC即为所求作(答案不唯一);
(2)如图②中,平行四边形ABCD即为所求作;
(3)如图③中,△ABC即为所求作(答案不唯一);
∵AB=AG,BC=CG,
∴AC⊥BG,
∵△ABG的面积为,
∴△ABC的面积为5,且∠ACB=90°.
【点睛】
本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
5、AM=EN,理由见解析
【分析】
根据旋转性质和等边三角形的性质可证得∠ABM=∠EBN,BM=BN,AB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.
【详解】
解:AM=EN,理由为:
∵△ABE是等边三角形,
∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,
∵线段BM绕点B逆时针旋转60°得到BN,
∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,
∴∠ABM=∠EBN,
在△ABM和△EBN中,
,
∴△ABM≌△EBN(SAS),
∴AM=EN.
【点睛】
本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.
相关试卷
这是一份数学沪科版第24章 圆综合与测试习题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共32页。试卷主要包含了如图,点A,下列判断正确的个数有等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共36页。