终身会员
搜索
    上传资料 赚现金

    精品试题沪科版九年级数学下册第24章圆章节测评试题(精选)

    立即下载
    加入资料篮
    精品试题沪科版九年级数学下册第24章圆章节测评试题(精选)第1页
    精品试题沪科版九年级数学下册第24章圆章节测评试题(精选)第2页
    精品试题沪科版九年级数学下册第24章圆章节测评试题(精选)第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试巩固练习

    展开

    这是一份2021学年第24章 圆综合与测试巩固练习,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆章节测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(   

    A.22.5° B.45° C.90° D.67.5°

    2、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(   

    A. B. C. D.

    3、下列各点中,关于原点对称的两个点是(  )

    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)

    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)

    4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.

    A.3π B.6π C.12π D.18π

    5、如图,ABCD是⊙O的弦,且,若,则的度数为(   

    A.30° B.40° C.45° D.60°

    6、下列图案中既是轴对称图形,又是中心对称图形的是(   

    A.  B.

    C. D.

    7、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    8、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(   

    A.25° B.80° C.130° D.100°

    9、下列图形中,是中心对称图形也是轴对称图形的是(  )

    A. B. C. D.

    10、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.

    C. D.(﹣2,0)或(﹣5,0)

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

    2、如图,x轴交于两点,,点Py轴上的一个动点,PD于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

    3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    4、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.

    5、如图,半圆O中,直径AB=30,弦CDAB长为6π,则由ACAD围成的阴影部分面积为_______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在中,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F

    (1)求的度数;

    (2)若,且,求DF的长.

    2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CEDE,其中,过点C于点F,交直线l于点H

    (1)当直线l在如图①的位置时

    ①请直接写出之间的数量关系______.

    ②请直接写出线段BHEHCH之间的数量关系______.

    (2)当直线l在如图②的位置时,请写出线段BHEHCH之间的数量关系并证明;

    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.

    3、在等边中,将线段AB绕点A顺时针旋转得到线段AD

    (1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;

    (2)在(1)的条件下连接BD,交CA的延长线于点F

    ①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.

    4、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,AB两点均在格点上.请按要求在图①,图②,图③中画图:

    (1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.

    (2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,CD两点均在格点上.

    (3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.

    5、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含BD点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 ENAMCM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据同弧所对的圆周角是圆心角的一半即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.

    2、B

    【分析】

    阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.

    【详解】

    解:由图可知:阴影部分的面积=扇形扇形

    由旋转性质可知:

    中,

    有勾股定理可知:

    阴影部分的面积=扇形扇形

    故选:B.

    【点睛】

    本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.

    3、D

    【分析】

    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.

    【详解】

    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;

    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;

    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;

    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;

    故选:D

    【点睛】

    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.

    4、B

    【分析】

    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.

    【详解】

    解:它的侧面展开图的面积=×2×2×3=6(cm2).

    故选:B.

    【点睛】

    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    5、B

    【分析】

    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.

    6、B

    【分析】

    根据中心对称图形与轴对称图形的概念逐项分析

    【详解】

    解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;

    B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;

    C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    故选B

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.

    7、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    8、D

    【分析】

    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.

    【详解】

    解:∵四边形ABCD内接于⊙O

    ∴∠B+∠ADC=180°,

    ∵∠ADC=130°,

    ∴∠B=50°,

    由圆周角定理得,∠AOC=2∠B=100°,

    故选:D.

    【点睛】

    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

    9、C

    【分析】

    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.

    【详解】

    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;

    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;

    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.

    故选:C

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    10、C

    【分析】

    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.

    【详解】

    解:∵直线x轴于点A,交y轴于点B

    ∴令x=0,得y=-3,令y=0,得x=-4,

    A(-4,0),B(0,-3),

    OA=4,OB=3,

    AB=5,

    设⊙P与直线AB相切于D

    连接PD

    PDABPD=1,

    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO

    ∴△APD∽△ABO

    AP=

    OP= OP=

    PP

    故选:C.

    【点睛】

    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.

    二、填空题

    1、40°度

    【分析】

    直接根据圆周角定理即可得出结论.

    【详解】

    解:是同弧所对的圆心角与圆周角,

    故答案为:

    【点睛】

    本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    2、       

    【分析】

    根据题中点的坐标可得圆的直径,半径为1,分析AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.

    【详解】

    解:如图所示:当点P到如图位置时,的面积最大,

    圆的直径,半径为1,

    AB定长为底,点D在圆上,高最大为圆的半径,如图所示:

    此时面积的最大值为:

    如图所示:连接AP

    PD于点D

    设点

    中,

    中,

    时,PD取得最小值,

    最小值为

    故答案为:①;②

    【点睛】

    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.

    3、

    【分析】

    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.

    【详解】

    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为

    根据题意可得:

    解得:

    故答案是:

    【点睛】

    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.

    4、2

    【分析】

    根据扇形的面积公式S,代入计算即可.

    【详解】

    解:∵“完美扇形”的周长等于6,

    ∴半径r=2,弧长l为2,

    这个扇形的面积为:=2.

    答案为:2.

    【点睛】

    本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.

    5、45

    【分析】

    连接OCOD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.

    【详解】

    解:连接OCOD

    ∵直径AB=30,

    OC=OD=

    CDAB

    SACD=SOCD

    长为6π

    ∴阴影部分的面积为S阴影=S扇形OCD=

    故答案为:45π

    【点睛】

    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.

    三、解答题

    1、(1)45°;(2)

    【分析】

    (1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;

    (2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.

    【详解】

    解:(1)由旋转可知:

    由三角形内角和定理得

    ∴点ADFE共圆.

    (2)连接EB

    又∵

    中,

    【点睛】

    本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.

    2、(1)①;②;(2);证明见解析;(3)

    【分析】

    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CFDE,得出CF平分∠ECD即可;

    ,过点CCGBEG,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;

    (2),过点CBE于点M,得出,先证得出可证是等腰直角三角形,可得即可;

    (3),根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CFDE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.

    【详解】

    解:(1)①

    CE=BC,四边形ABCD为正方形,

    BC=CD=CE

    CFDE

    CF平分∠ECD

    ∴∠ECH=∠HCD

    故答案为:∠ECH=∠HCD

    ,过点CCGBEG

    BC=EC

    ∴∠ECG=∠BCG=

    ∵∠ECH=∠HCD=

    ∴∠GCH=∠ECG+∠ECF=+

    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,

    CG=HG

    RtGHC中, 

    GE=   

    GH=GE+EH=

    故答案是:

    (2)

     证明:过点CBE于点M

    ⁰,

    是等腰直角三角形,

     

    (3)

    ,分两种情况,

    当∠ABE=90°-15°=75°时,

    BC=CE

    ∴∠CBE=∠CEB=15°,

    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,

    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,

    CE=CD

    ∴△CDE为等边三角形,

    DE=CD=AB=2,∠DEC=60°,

    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,

    CFDE

    DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,

    EF=HF=1,

    HE=

    当∠ABE=90°+15°=105°,

    BC=CE,∠CBE=∠CEB=15°,

    ∴∠BCE=180°-∠CBE-∠CEB=150°,

    ∴∠DCE=360°-∠DCB-∠BCE=120°,

    CE=BC=CDCHDE

    ∴∠FCE= 

    ∴∠FEC=180°-∠CFE-∠FCE=30°,

    CF=

    EF=

    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,

    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH

    FH=FE

    EH=

    【点睛】

    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.

    3、(1);(2)①见解析;②AE=AF+CE,证明见解析.

    【分析】

    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;

    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.

    【详解】

    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    α的取值范围为:

    (2)补全图形如下:

    (3)AE=AF+CE

    证明:在AE上截取AH=AF,由旋转可得:AB=AD

    ∴∠D=∠ABF

    ∵△ABC为等边三角形,

    AB=AC,∠BAC=ACB=60°,

    AD=AC

    ∵∠DAF=∠CAH

    ∴△AFD≌△AHC

    ∴∠AFD=∠AHC,∠D=∠ACH

    ∴∠AFB=∠CHE

    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,

    ∴∠CHE+∠D=∠D+∠HCE=60°,

    ∴∠CHE=∠HCE

    CE=HE

    AE=AH+HE=AF+CE

    【点睛】

    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.

    4、(1)见解析;(2)见解析;(3)见解析

    【分析】

    (1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);

    (2)作边长为2,高为4的平行四边形即可;

    (3)根据(1)的结论,作BG边的中线,即可得解.

    【详解】

    解:(1)如图①中,△ABC即为所求作(答案不唯一);

    (2)如图②中,平行四边形ABCD即为所求作;

    (3)如图③中,△ABC即为所求作(答案不唯一);

    AB=AGBC=CG

    ACBG

    ∵△ABG的面积为

    ∴△ABC的面积为5,且∠ACB=90°.

    【点睛】

    本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    5、AM=EN,理由见解析

    【分析】

    根据旋转性质和等边三角形的性质可证得∠ABM=∠EBNBM=BNAB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.

    【详解】

    解:AM=EN,理由为:

    ∵△ABE是等边三角形,

    AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,

    ∵线段BM绕点B逆时针旋转60°得到BN

    BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,

    ∴∠ABM=∠EBN

    在△ABM和△EBN中,

    ∴△ABM≌△EBNSAS),

    AM=EN

    【点睛】

    本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.

     

    相关试卷

    数学沪科版第24章 圆综合与测试习题:

    这是一份数学沪科版第24章 圆综合与测试习题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共32页。试卷主要包含了如图,点A,下列判断正确的个数有等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共36页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map