初中沪科版第24章 圆综合与测试课后练习题
展开
这是一份初中沪科版第24章 圆综合与测试课后练习题,共31页。
沪科版九年级数学下册第24章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).A.90° B.100° C.120° D.150°2、下列汽车标志中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.4、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )A.19° B.38° C.52° D.76°5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°6、下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.7、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A.3 B.4 C.5 D.68、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A.它们的开口方向相同 B.它们的对称轴相同C.它们的变化情況相同 D.它们的顶点坐标相同第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.2、一个五边形共有__________条对角线.3、在平面直角坐标系中,点关于原点对称的点的坐标是______.4、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).5、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.三、解答题(5小题,每小题10分,共计50分)1、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案)2、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).3、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)4、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.(1)求证:四边形是矩形;(2)若,,求的长..5、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长. -参考答案-一、单选题1、D【分析】将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,,可将绕点逆时针旋转得,如图,连接,,,,为等边三角形,,,在中,,,,,为直角三角形,且,.故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.2、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.4、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.5、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:,,是等边三角形,,,.故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.8、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】根据旋转的性质及抛物线的性质即可确定答案.【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.二、填空题1、2【分析】取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.【详解】解:如图所示,取AC中点O,∵,即,∴∠ADC=90°,∴点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,∵,,∠ACB=90°,∴,∴,∴,∴,故答案为:2.【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.2、5【分析】由n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.3、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可证,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,无法确定HD=2BG,故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDH,BD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC=∠DHF +∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,∴H,F,E,G四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,∴=1=,∠GAH=90°,AC=取GH的中点P,连接PA,∴GH=2PA,∴=,∴当PA取最小值时,有最大值,连接PC,AC,则PA+PC≥AC,∴PA≥AC- PC,∴当PC最大时,PA最小,∵直径是圆中最大的弦,∴PC=1时,PA最小,∴当A,P,C三点共线时,且PC最大时,PA最小,∴PA=-1,∴最大值为:1-(-1)=2-,∴四边形CGAH面积的最大值为2,∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.5、-2【分析】由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.【详解】由图可知,当CN⊥AB且C、M、N三点共线时,长度最小∵直线AB的解析式为当x=0时,y=5,当y=0时,x=5∴B(0,5),A(5,0)∴AO=BO,△AOB是等腰直角三角形∴∠BAO=90°当CN⊥AB时,则△ACN是等腰直角三角形∴CN=AN∵C∴AC=7∵AC2=CN2+AN2=2CN2∴CN=当 C、M、N三点共线时,长度最小即MN=CN-CM=-2故答案为:-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.三、解答题1、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OC,∵OA=OC,∴∠CAB=∠ACO,∵∠FAC=∠BAC,∴∠FAC=∠ACO,∴AF//OC,∴∠AFC+∠OCF=180°,∵CF⊥AF,∴∠OCF=90°,即OC⊥CF,∴CF是⊙O的切线.(2)在△AFC和△AEC中,,∴△AFC≌△AEC,∴S△AFC=S△AEC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE,∴S△BCD=2S△BCE,∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA,∵sin∠CAB=,∴sin∠CAB=sin∠BCE=,∴BE=,AB=,∴AE=,∴====.故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.2、(1)8(2)(3)或.【分析】(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点O作OH⊥AC于点H,由垂径定理得:AH=CH=AC,在Rt△OAH中,,∴设OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,∵∠DEO=∠AEC,∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,由(1)可得 OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C, ∴△EGC∽△ADM,∴,∴,∴AD=2;当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM, ∴,∴,∴AD=,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.3、(1)16π(2)24π【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.(1)解:阴影部分的周长=2××2π×6+=16π;(2)解:∵阴影部分的面积=S半圆+S扇形BAC﹣S半圆=S扇形BAC,∴阴影部分的面积==24π.答:阴影部分的周长为16π,阴影部分的面积为24π.【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n°,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:.4、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.【详解】(1)证明:∵,DE是的两条切线,于点∴∠EFC=∠EDC=∠FCD=90°,∴四边形是矩形;(2)∵四边形是矩形,∴EF=,CF=,∵,,DE是的两条切线,∴AB=AC,BE=DE,设AB=AC=x,则AE=x+2,AF=x-2,在中,,解得:x=5,∴AC=5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.5、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:是的直径,,,,,,,即,是的切线;(2)解:的半径为,,,,,,,,又,,,即,.【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共25页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试课后练习题,共29页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。