2021学年第26章 概率初步综合与测试练习
展开这是一份2021学年第26章 概率初步综合与测试练习,共19页。试卷主要包含了在一个不透明的布袋中,红色,下列事件中,属于必然事件的是,下列说法中,正确的是,下列事件中是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件是必然事件的是( )
A.明天一定是晴天 B.购买一张彩票中奖
C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同
2、成语“守株待兔”描述的这个事件是( )
A.必然事件 B.确定事件 C.不可能事件 D.随机事件
3、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
4、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )
A. B. C. D.
5、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )
A.24 B.18 C.16 D.6
6、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )
A. B. C. D.
7、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
8、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
9、下列事件中是必然事件的是( )
A.小菊上学一定乘坐公共汽车
B.某种彩票中奖率为1%,买10000张该种票一定会中奖
C.一年中,大、小月份数刚好一样多
D.将豆油滴入水中,豆油会浮在水面上
10、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球,两个都是黑球的概率_______.
2、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.
3、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是 _____.
4、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
5、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.
三、解答题(5小题,每小题10分,共计50分)
1、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,
(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?
(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.
2、一个不透明的盒子里装有5个黑球,2个白球和若干个黄球.它们除颜色不同外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)求盒子里有几个黄球?
(2)小张和小王将盒子中的黑球取出4个,利用剩下的球进行摸球游戏.他们约定:先摸出1个球后不放回,再摸出1个球,若这两个球中有黄球,则小张胜,否则小王胜、你认为这个游戏公平吗?请用列表或画树状图说明理由.
3、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?
4、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:
请结合图中所给信息,解答下列问题
(1)本次调查的学生共有 人;
(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;
(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
5、盲盒为消费市场注入了活力.某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中.
(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;
(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率.
-参考答案-
一、单选题
1、D
【分析】
必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.
【详解】
解:A、B、C选项中的事件都是随机事件,不符合要求;
D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;
故选D.
【点睛】
本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.
2、D
【分析】
根据必然事件、不可能事件、随机事件的概念进行解答即可.
【详解】
解:“守株待兔”是随机事件.
故选D.
【点睛】
本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
4、A
【分析】
根据概率公式计算即可.
【详解】
解:袋中装有3个红球和5个绿球共8个球,
从袋中随机摸出1个球是红球的概率为,
故选:A.
【点睛】
此题考查了概率的计算公式,正确掌握计算公式是解题的关键.
5、A
【分析】
根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.
【详解】
解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.40,
∴口袋中白色球的个数可能是60×0.40=24个.
故选A.
【点睛】
本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.
6、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【详解】
解:列表得:
| 锁1 | 锁2 |
钥匙1 | (锁1,钥匙1) | (锁2,钥匙1) |
钥匙2 | (锁1,钥匙2) | (锁2,钥匙2) |
钥匙3 | (锁1,钥匙3) | (锁2,钥匙3) |
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
7、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【分析】
根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
9、D
【分析】
必然事件就是一定发生的事件,根据定义即可解答.
【详解】
解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;
B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;
C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;
D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.
故选:D.
【点睛】
用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、D
【分析】
在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.
【详解】
解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,
红球有:个,
则随机摸出一个红球的概率是:.
故选:D.
【点睛】
本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.
二、填空题
1、
【分析】
利用树状图法列出所有的等可能性的结果数,然后找到摸到两个黑球的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
由树状图可知,一共有20种等可能性的结果数,其中摸到两个黑球的结果数有6种,
∴P摸到两个都是黑球,
故答案为:.
【点睛】
本题主要考查了用树状图或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.
2、
【分析】
根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,
则摸出的小球标号之和大于5的概率为.
故答案为:.
【点睛】
本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
3、
【分析】
先画树状图列出所有等可能结果,从中找到使方程有两个不相等的实数根,即m>n的结果数,再根据概率公式求解可得.
【详解】
解:画树状图如下:
由树状图知,共有12种等可能结果,其中能使方程x2-mx+n=0有两个不相等的实数根,即m2-4n>0,m2>4n的结果有4种结果,
∴关于x的一元二次方程x2-mx+n=0有两个不相等的实数根的概率是,
故答案为:.
【点睛】
本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.
4、
【分析】
画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.
【详解】
解:画树状图如图:
共有12个等可能的结果,摸到的两个红球的有2种结果,
摸到的两个红球的概率是,
故答案为:.
【点睛】
本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.
5、4
【分析】
设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.
【详解】
设黄球的个数为x,
∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,
∴,
解得:,
∴布袋中红色球的个数很可能是(个).
故答案为:4.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)根据列表法求概率即可
【详解】
(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;
(2)列表如下,
| 5 | 5 | 8 | 8 |
5 | \ | 55 | 85 | 85 |
5 | 55 | \ | 85 | 85 |
8 | 58 | 58 | \ | 88 |
8 | 58 | 58 | 88 | \ |
共有12种等可能结果,其中凑成一对的有4种,
随机抽取两张扑克牌成为一对的概率为
【点睛】
本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键.
2、
(1)布袋里有1个黄球
(2)公平,表格见解析
【分析】
(1)设布袋里黄球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
(1)
解:设布袋里黄球有x个,
根据题意,得:,
解得:x=1,
经检验:x=1是原分式方程的解,
所以布袋里有1个黄球;
(2)
解:公平;
列表如下:
| 白 | 白 | 黑 | 黄 |
白 |
| (白,白) | (白,黑) | (白,黄) |
白 | (白,白) |
| (白,黑) | (白,黄) |
黑 | (黑,白) | (黑,白) |
| (黑,黄) |
黄 | (黄,白) | (黄,白) | (黄,黑) |
|
由表知,共有12种等可能结果,其中两个球中有黄球的有6种情况,两个球中没有黄球的有6种情况,
∴P(小张胜)=P(小王胜)= ,
∴这个游戏公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
3、小宇获胜的概率是,见解析.
【分析】
根据题意画树状图表示出所有等可能的情况,继而解题.
【详解】
解:画树状图如下,
所有机会均等的情况共9种,小宇获胜的概率为:,
答:小宇获胜的概率是.
【点睛】
本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.
4、(1)100;(2)144°,见解析;(3)见解析,
【分析】
(1)根据器乐的占比和人数进行求解即可;
(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;
(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.
【详解】
解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);
故答案为:100;
(2)表示D选项的扇形圆心角的度数是,
喜欢B类项目的人数有:100-30-10-40=20(人),
补全条形统计图如图1所示:
故答案为:144°;
(3)画树形图如图2所示:
共有12种情况,被选取的两人恰好是甲和乙有2种情况,
则被选取的两人恰好是甲和乙的概率是.
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.
5、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元).
【分析】
(1)利用列举法求解即可;
(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可.
【详解】
解:(1)∵随机抽取一个盲盒可以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,
∴抽到多接口优盘;
(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C.
则从4个盲盒中随机抽取2个的树状图如下:
由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种.
∴P(抽中商品总价值不低于80元).
【点睛】
本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
相关试卷
这是一份初中数学第26章 概率初步综合与测试课时作业,共21页。试卷主要包含了下列说法正确的有,下列说法不正确的是等内容,欢迎下载使用。
这是一份2021学年第26章 概率初步综合与测试测试题,共19页。试卷主要包含了下列说法错误的是,下列说法正确的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试达标测试,共18页。试卷主要包含了下列事件,你认为是必然事件的是,不透明的布袋内装有形状,在一个不透明的布袋中,红色等内容,欢迎下载使用。