![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步定向攻克试题(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12686795/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步定向攻克试题(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12686795/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步定向攻克试题(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12686795/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共20页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是,下列四幅图的质地大小,下列事件中,属于不可能事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有( )A.16个 B.8个 C.4个 D.2个2、下列事件是必然事件的是( )A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯3、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定4、下列事件中,是必然事件的是( )A.刚到车站,恰好有车进站B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C.打开九年级上册数学教材,恰好是概率初步的内容D.任意画一个三角形,其外角和是360°5、下列说法正确的是( )A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨6、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )A. B. C. D.17、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )A. B. C. D.8、下列说法正确的是( )A.同时投掷两枚相同的硬币,出现“一正一反”的概率是B.事件“两个正数相加,和是正数”是必然事件C.数2和8的比例中项是4D.同一张底片洗出来的两张照片是位似图形9、下列事件中,属于不可能事件的是( )A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯10、下列关于随机事件的概率描述正确的是( )A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某路口的交通信号灯红灯亮35秒,绿灯亮60秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是_________.2、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为______3、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.4、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是________.5、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.三、解答题(5小题,每小题10分,共计50分)1、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.2、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);②1个宣传类岗位:垃圾分类知识宣传(用表示).(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.3、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大4、在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线.(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率.5、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果.第2枚第1枚1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性______(填“相等”或者“不相等”);(2)计算下列事件的概率:①两枚骰子的点数相同;②至少有一枚骰子的点数为3. -参考答案-一、单选题1、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.【详解】解:∵摸球800次红球出现了160次,∴摸到红球的概率约为,∴20个球中有白球20×=4个,故选:C.【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.2、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.3、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.4、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D.【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.5、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.6、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.7、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可.【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,∴点数大于2且小于5的有3或4,∴向上一面的点数大于2且小于5的概率是=,故选:C.【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键.8、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是±4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B.【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.9、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意; C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.10、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、【分析】根据概率公式,即可求解.【详解】解:根据题意得:当小明到达该路口时,遇到红灯的概率是 .故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.2、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率.【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,故答案为:.【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键.3、##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.4、6【分析】随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.【详解】解:记摸出一个球是红球为事件白球有个故答案为:.【点睛】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.5、【分析】直接根据几何概率求解即可.【详解】解:图中共有9个小正方形,其中阴影部分共有5个小正方形,∴从图中随机取一点,这点在阴影部分的概率是,故答案为:.【点睛】本题考查几何概率求解,理解并掌握几何概率是解题关键.三、解答题1、(1)袋中黄球的个数为1个;(2)【分析】(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;【详解】解:(1)设袋中黄球的个数为x个,根据题意得,解得x=1,经检验,x=1是方程的根,所以袋中黄球的个数为1个;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,所以两次摸出的都是红球的概率.【点睛】本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.2、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为.(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.3、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【分析】(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.【详解】(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,共有6种等可能的结果数,其中三题全答对的结果数为1所以小明顺利通关的概率=故通关的概率为(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:或共有6种等可能的结果数,其中三题全答对的结果数为1,所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)共有8种等可能的结果数,其中三题全答对的结果数为1所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4、(1)6;(2)【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点出发,只能向右或向下,先向右的路线为:,,先向下的路线为:,,共6条路线故答案为:6(2)列表如下, ABCD、EADEBDECDED、FADFBDFCDFE、FAEFBEFCEF根据列表可知共有9种等可能情况,只有CDE,CDF, CEF是直角三角形则所画三角形是直角三角形的概率为【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键.5、(1)相等;(2)①;②【分析】(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;(2)①先根据表格得到两枚骰子的点数相同(记为事件A)的结果有6种,然后利用概率公式求解即可;②先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可.【详解】解:(1)∵两枚骰子质地均匀,∴同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等; 故答案为:相等;(2)①由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),∴②由表格可知至少有一枚骰子的点数为3(记为事件B)的结果有11种,∴.【点睛】本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键.
相关试卷
这是一份2020-2021学年第26章 概率初步综合与测试达标测试,共20页。
这是一份数学九年级下册第26章 概率初步综合与测试一课一练,共20页。试卷主要包含了下列事件中,是必然事件的是,下列事件中是不可能事件的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份数学第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列说法正确的是,下列事件是必然事件的是,下列事件,你认为是必然事件的是等内容,欢迎下载使用。