终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步章节训练试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步章节训练试卷(无超纲带解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步章节训练试卷(无超纲带解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步章节训练试卷(无超纲带解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第26章 概率初步综合与测试当堂达标检测题

    展开

    这是一份初中数学第26章 概率初步综合与测试当堂达标检测题,共19页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).

    A.      B.             C.    D.1

    2、下列说法错误的是(   

    A.必然事件发生的概率是1 B.不可能事件发生的概率为0

    C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生

    3、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是(     

    A.1 B. C. D.

    4、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:

    抛掷次数m

    500

    1000

    1500

    2000

    2500

    3000

    4000

    5000

    “正面向上”的次数n

    265

    512

    793

    1034

    1306

    1558

    2083

    2598

    “正面向上”的频率

    0.530

    0.512

    0.529

    0.517

    0.522

    0.519

    0.521

    0.520

    下面有3个推断:

    ①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是(  

    A.② B.①③ C.②③ D.①②③

    5、下列事件中,是必然事件的是(   

    A.刚到车站,恰好有车进站

    B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球

    C.打开九年级上册数学教材,恰好是概率初步的内容

    D.任意画一个三角形,其外角和是360°

    6、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是(      

    累计抽测的学生数n

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    体质健康合格的学生数与n的比值

    0.85

    0.9

    0.93

    0. 91

    0.89

    0.9

    0.91

    0.91

    0.92

    0.92

    A.0.92 B.0.905 C.0.03 D.0.9

    7、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(   

    A. B. C. D.

    8、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是(   

    A. B. C. D.

    9、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为(   

    A. B. C. D.

    10、关于“明天是晴天的概率为90%”,下列说法正确的是(    ).

    A.明天一定是晴天 B.明天一定不是晴天

    C.明天90%的地方是晴天 D.明天是晴天的可能性很大

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在发展现代化农业的形势下,现有AB两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:

    种子数量

    100

    300

    500

    1000

    3000

    A

    出芽率

    0.99

    0.94

    0.96

    0.98

    0.97

    B

    出芽率

    0.99

    0.95

    0.94

    0.97

    0.96

    下面有三个推断:

    ①当实验种子数量为100时,两种种子的出芽率均为0.99,所以AB两种新玉米种子出芽的概率一样;

    ②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;

    ③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________

    2、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:

    移植的棵数n

    1000

    1500

    2500

    4000

    8000

    15000

    20000

    30000

    成活的棵数m

    865

    1356

    2220

    3500

    7056

    13170

    17580

    26430

    成活的频率

    0.865

    0.904

    0.888

    0.875

    0.882

    0.878

    0.879

    0.881

    估计该种幼树在此条件下移植成活的概率为_______.

    3、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_______个.

    4、从,0,1,2这四个数中任取一个数,作为关于x的方程a的值,则该方程有实数根的概率为_________.

    5、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.

    三、解答题(5小题,每小题10分,共计50分)

    1、甲、乙、丙、丁4人聚会,每人带了一件礼物,4件礼物外盒包装完全相同,将4件礼物放在一起.甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙两人抽到的都不是自己带来的礼物的概率.

    2、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.

    (1)请列举出所有可能结果;

    (2)求取出的两个小球标号和等于5的概率.

    3、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,

    (1)问从中随机抽取一张扑克牌是梅花8的概率是多少?

    (2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.

    4、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s,小明的爸爸由北往南开车随机地行驶到该路口.

    (1)他遇到红灯、绿灯、黄灯的概率各是多少?

    (2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?

    5、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了如下的条形统计图和扇形统计图.请根据图中信息,回答下列问题:

     

    (1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;

    (2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;

    (3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.

    【详解】

    解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,

    任意摸出1个,摸到红球的概率是:1÷3=

    故选:C.

    【点睛】

    本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m结果,那么事件A的概率PA)=

    2、D

    【分析】

    根据概率的意义分别判断后即可确定正确的选项.

    【详解】

    解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;

    B. 不可能事件发生的概率是0,故该选项正确,不符合题意;

    C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;

    D. 概率很小的事件也可能发生,故该选项不正确,符合题意;

    故选D

    【点睛】

    本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.

    3、B

    【分析】

    根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.

    【详解】

    解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,

    a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,

    关于x的方程为一元二次方程的概率是

    故选择B.

    【点睛】

    本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.

    4、C

    【分析】

    根据概率公式和图表给出的数据对各项进行判断,即可得出答案.

    【详解】

    解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;

    故选:C

    【点睛】

    本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.

    5、D

    【分析】

    根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.

    【详解】

    解:A、刚到车站,恰好有车进站是随机事件;

    B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;

    C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;

    D、任意画一个三角形,其外角和是360°是必然事件;

    故选D.

    【点睛】

    本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.

    6、A

    【分析】

    根据频数估计概率可直接进行求解.

    【详解】

    解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;

    故选A.

    【点睛】

    本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键.

    7、A

    【分析】

    根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可

    【详解】

    解:∵总可能结果有4种,摸到标号大于2的结果有2种,

    ∴从袋子中任意摸出1个球,摸到标号大于2的概率是

    故选A

    【点睛】

    本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.

    8、C

    【分析】

    根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.

    【详解】

    解:列树状图如下所示:

       

    根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,

    ∴恰好有两次正面朝上的事件概率是:

    故选C.

    【点睛】

    本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.

    9、C

    【分析】

    根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.

    【详解】

    解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,

    ∴随机抽取一个球是黄球的概率是

    故选C.

    【点睛】

    本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.

    10、D

    【分析】

    根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.

    【详解】

    解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,

    故选:D.

    【点睛】

    题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.

    二、填空题

    1、②③

    【分析】

    大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.

    【详解】

    ①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;

    ②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;

    ③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,

    故答案为:②③

    【点睛】

    此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.

    2、0.880

    【分析】

    大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.

    【详解】

    解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,

    从上表可以看出,频率成活的频率,即稳定于0.880左右,

    ∴估计这种幼树移植成活率的概率约为0.88.

    故答案为:0.880.

    【点睛】

    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.

    3、10

    【分析】

    设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可.

    【详解】

    解:设袋中共有x个球,

    ∵袋中只装有4个红球,且摸出红球的概率为

    解得x=10.

    经检验,x=10是分式方程的解,且符合题意,

    故答案为:10.

    【点睛】

    本题考查的是概率公式,熟知随机事件A的概率PA)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.

    4、

    【分析】

    根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.

    【详解】

    解:∵当,一元二次方程有实数根

    ,0,1,2这四个数中任取一个数,符合条件的结果有

    所得方程有实数根的概率为

    故答案为:

    【点睛】

    本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.

    5、8

    【分析】

    首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.

    【详解】

    解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,

    ∴摸出红球的概率为0.2,

    由题意,

    解得:

    经检验,是原方程的解,且符合题意,

    故答案为:8.

    【点睛】

    本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.

    三、解答题

    1、

    【分析】

    画出树状图,然后根据概率公式列式进行计算即可得解.

    【详解】

    解:设甲、乙、丙、丁4人的礼物分别记为abcd

    根据题意画出树状图如图:

    一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,

    ∴甲、乙两人抽到的都不是自己带来的礼物的概率为

    【点睛】

    本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.

    2、(1)见详解;(2).

    【分析】

    (1)根据题意通过列出相应的表格,即可得出所有可能结果;

    (2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.

    【详解】

    解:(1)由题意列表得:

     

    1

    2

    3

    4

    1

    ---

    (2,1)

    (3,1)

    (4,1)

    2

    (1,2)

    ---

    (3,2)

    (4,2)

    3

    (1,3)

    (2,3)

    ---

    (4,3)

    4

    (1,4)

    (2,4)

    (3,4)

    ---

    所有可能的结果有12种;

    (2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,

    所以取出的两个小球标号和等于5的概率.

    【点睛】

    本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    3、(1);(2)

    【分析】

    (1)根据概率公式计算即可;

    (2)根据列表法求概率即可

    【详解】

    (1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是

    (2)列表如下,

     

    5

    5

    8

    8

    5

    \

    55

    85

    85

    5

    55

    \

    85

    85

    8

    58

    58

    \

    88

    8

    58

    58

    88

    \

    共有12种等可能结果,其中凑成一对的有4种,

    随机抽取两张扑克牌成为一对的概率为

    【点睛】

    本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键.

    4、(1)他遇到红灯、绿灯、黄灯的概率各是;(2)

    【分析】

    (1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;

    (2)将遇到红灯和黄灯的概率相加即可得.

    【详解】

    解:(1)红灯、绿灯、黄灯的总时间为

    则他遇到红灯的概率是

    遇到绿灯的概率是

    遇到黄灯的概率是

    答:他遇到红灯、绿灯、黄灯的概率各是

    (2)

    答:按照交通信号灯直行停车等候的概率是

    【点睛】

    本题考查了简单事件的概率,熟练掌握概率公式是解题关键.

    5、

    (1)50,,图见解析

    (2)36

    (3)

    【分析】

    (1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形统计图,再求出D选项所占的百分数即可求得D选项所对应的圆心角;

    (2)根据家长总人数乘以D选项所占的百分数即可求解;

    (3)根据(1)中求出的D选项人数可求得男女家长数,再用列表法求解即可.

    (1)

    解:家长总人数:11÷22%=50(人),

    B选项人数:50×40%=20(人),

    D选项人数:50-11-20-15=4(人),

    D选项所占的百分数为4÷50=8%,

    D选项所对的圆心角为360°×8%=28.8°,

    答:一共调查了50名家长,选项圆心角为,补全条形统计图如图:

    (2)

    解:450×8%=36(人),

    答:估计九年级“不知晓五项管理”举措的家长有36人;

    (3)

    解:D选项共4人,则男女家长各2人,从中抽取2人,画树状图为:

    由图可知,一共有12种等可能的结果,其中都是男家长的有2种,

    ∴抽取家长都是男家长的概率是

    【点睛】

    本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、用列表或画树状图法求概率,能从条形统计图和扇形统计图中获取有效信息是解答的关键.

     

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共19页。试卷主要包含了下列说法中正确的是,下列事件中,是必然事件的是,下列事件是必然发生的事件是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试一课一练:

    这是一份数学九年级下册第26章 概率初步综合与测试一课一练,共20页。试卷主要包含了下列事件中,是必然事件的是,下列事件中是不可能事件的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。

    初中数学第26章 概率初步综合与测试同步练习题:

    这是一份初中数学第26章 概率初步综合与测试同步练习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map