终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第26章概率初步同步测评试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第26章概率初步同步测评试卷(无超纲带解析)第1页
    2021-2022学年最新沪科版九年级数学下册第26章概率初步同步测评试卷(无超纲带解析)第2页
    2021-2022学年最新沪科版九年级数学下册第26章概率初步同步测评试卷(无超纲带解析)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第26章 概率初步综合与测试同步训练题

    展开

    这是一份沪科版九年级下册第26章 概率初步综合与测试同步训练题,共18页。试卷主要包含了下列四幅图的质地大小等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步同步测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(    ).

    A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件

    B.“打开电视机,正在播放乒乓球比赛”是必然事件

    C.“面积相等的两个三角形全等”是不可能事件

    D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次

    2、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是(  )

    A. B. C. D.

    3、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为(   

    A. B. C. D.

    4、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(   

    A. B. C. D.

    5、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:

    摸球的次数

    200

    300

    400

    1000

    1600

    2000

    摸到黑球的频数

    142

    186

    260

    668

    1064

    1333

    摸到黑球的频率

    0.7100

    0.6200

    0.6500

    0.6680

    0.6650

    0.6665

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有(  )个.

    A.4 B.3 C.2 D.1

    6、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是(   

    A. B. C. D.

    7、下列成语描述的事件为随机事件的是(  )

    A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升

    8、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法(   

    A.有道理,池中大概有1200尾鱼 B.无道理

    C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼

    9、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是(   

    A. B. C. D.1

    10、下列事件是必然事件的是(  )

    A.同圆中,圆周角等于圆心角的一半

    B.投掷一枚均匀的硬币100次,正面朝上的次数为50次

    C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天

    D.把一粒种子种在花盆中,一定会发芽

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.

    2、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.

    3、某商场举办有奖购物活动,购货满100元者发兑奖券一张,每张奖券获奖的可能性相同.在100张奖券中,设一等奖5个,二等奖10个,三等奖20个.若小李购货满100元,则她获奖的概率为 _____.

    4、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率______.

    5、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.

    三、解答题(5小题,每小题10分,共计50分)

    1、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:

    请结合图中所给信息,解答下列问题

    (1)本次调查的学生共有         人;

    (2)扇形统计图中表示D选项的扇形圆心角的度数是         ,并把条形统计图补充完整;

    (3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.

    2、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.

    (1)从中随机摸出一个小球,上面的数字不小于2的概率为   

    (2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.

    3、盒中有1枚黑棋和3白棋,这些棋除颜色外无其他差别,某同学一次摸出两枚棋,请通过列表或树状图计算这两枚棋颜色不同的概率.

    4、我市举行了某学科实验操作考试,有ABCD四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.

    (1)小厉参加实验D考试的概率是______;

    (2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.

    5、在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张.

    (1)求第二次取出的数字小于第一次取出的数字的概率.

    (2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据必然事件、不可能事件、随机事件的概念可区别各类事件.

    【详解】

    解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;

    B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;

    C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;

    D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;

    故选:A.

    【点睛】

    本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    2、B

    【分析】

    根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.

    【详解】

    解:随机掷一枚质地均匀的硬币三次,

    根据树状图可知至少有两次正面朝上的事件次数为:4,

    总的情况为8次,

    故至少有两次正面朝上的事件概率是:

    故选:B.

    【点睛】

    本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.

    3、A

    【分析】

    根据概率公式计算即可.

    【详解】

    解:袋中装有3个红球和5个绿球共8个球,

    从袋中随机摸出1个球是红球的概率为

    故选:A

    【点睛】

    此题考查了概率的计算公式,正确掌握计算公式是解题的关键.

    4、A

    【分析】

    根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可

    【详解】

    解:∵总可能结果有4种,摸到标号大于2的结果有2种,

    ∴从袋子中任意摸出1个球,摸到标号大于2的概率是

    故选A

    【点睛】

    本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.

    5、C

    【分析】

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.

    【详解】

    解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,

    估计摸出黑球的概率为0.667,

    则摸出绿球的概率为

    袋子中球的总个数为

    由此估出黑球个数为

    故选:C.

    【点睛】

    本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    6、A

    【分析】

    首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.

    【详解】

    解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,

    ∴正面都朝上的概率是: .

    故选A.

    【点睛】

    本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.

    7、C

    【分析】

    根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.

    【详解】

    解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;

    B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;

    C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;

    D、旭日东升,是必然会发生的,不是随机事件,不符合题意;

    故选C.

    【点睛】

    本题主要考查了随机事件的定义,熟知定义是解题的关键.

    8、A

    【分析】

    设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.

    【详解】

    解:设池中大概有鱼x尾,由题意得:

    解得:

    经检验:是原方程的解;

    ∴池塘主的做法有道理,池中大概有1200尾鱼;

    故选A.

    【点睛】

    本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.

    9、C

    【分析】

    根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;

    【详解】

    根据已知图形可得,中心对称图形是

    共有3个,

    ∴抽到的图案是中心对称图形的概率是

    故选C.

    【点睛】

    本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.

    10、C

    【分析】

    直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.

    【详解】

    A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;

    B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;

    C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;

    D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.

    故选:C.

    【点睛】

    本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    二、填空题

    1、21

    【分析】

    根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.

    【详解】

    解:∵小明通过多次试验发现,摸出白球的频率稳定在0.3左右,

    ∴白球的个数=30×0.3=9个,

    ∴红球的个数=30-9=21个,

    故答案为:21.

    【点睛】

    本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    2、

    【分析】

    根据题意,分时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.

    【详解】

    解:当时,该方程不是一元二次方程,

    时,

    解得

    时,关于x的一元二次方程有实数解

    随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是

    故答案为:

    【点睛】

    本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.

    3、##

    【分析】

    根据题意在100张奖券中,奖项设置共有35个奖,根据概率公式求解即可

    【详解】

    解:根据题意在100张奖券中,奖项设置共有35个奖,

    若小李购货满100元,则她获奖的概率为

    故答案为:

    【点睛】

    本题考查了概率公式求概率,是解题的关键.

    4、

    【分析】

    利用概率公式直接求解即可.

    【详解】

    解:∵袋中有形状材料均相同的白球2个, 红球4个,共6个球,

    ∴任意摸一个球是红球的概率

    故答案为:

    【点睛】

    本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=

    5、

    【分析】

    由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.

    【详解】

    解:P(红球)=

    故答案为:

    【点睛】

    本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.

    三、解答题

    1、(1)100;(2)144°,见解析;(3)见解析,

    【分析】

    (1)根据器乐的占比和人数进行求解即可;

    (2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;

    (3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.

    【详解】

    解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);

    故答案为:100;

    (2)表示D选项的扇形圆心角的度数是

    喜欢B类项目的人数有:100-30-10-40=20(人),

    补全条形统计图如图1所示:

    故答案为:144°;

    (3)画树形图如图2所示:

    共有12种情况,被选取的两人恰好是甲和乙有2种情况,

    则被选取的两人恰好是甲和乙的概率是

    【点睛】

    本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.

    2、(1);(2)

    【分析】

    (1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;

    (2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.

    【详解】

    解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,

    其中数字不小于2的情况有:2,3,4,共3种,

    P(小球上写的数字不小于2)=

    故答案为:

    (2)根据题意列表得:

     

    1

    2

    3

    4

    1

    ﹣﹣﹣

    (1,2)

    (1,3)

    (1,4)

    2

    (2,1)

    ﹣﹣﹣

    (2,3)

    (2,4)

    3

    (3,1)

    (3,2)

    ﹣﹣﹣

    (3,4)

    4

    (4,1)

    (4,2)

    (4,3)

    ﹣﹣﹣

    所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,

    P(两次摸出小球上的数字和恰好是奇数)=

    故答案为:

    【点睛】

    本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.

    3、

    【分析】

    用列表法列举所有可能出现的结果,再找出所求事件可能出现的结果,由即可求出相应概率.

    【详解】

    如表所示

    由表可知共有12种情况,其中摸出两枚棋子的颜色不同的情况有6种

    P=

    【点睛】

    当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法,列表法的一般步骤:把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格,把所求事件发生的可能结果都找出来代入计算公式:,当事件的发生只经过两个步骤时,一般用列表法就能将所有的可能结果列举出来,当经过多个步骤时,表格就不够清晰了,而画树状图法的适用面更广,特别是多个步骤时,层次清楚,一目了然.

    4、

    (1)

    (2)

    【分析】

    (1)根据概率公式即可得;

    (2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.

    (1)

    解:小厉参加实验考试的概率是

    故答案为:

    (2)

    解:列表如下:

     

    所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,4种情况,

    所以小王、小张抽到同一个实验的概率为

    【点睛】

    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.

    5、(1);(2)设计见详解:.

    【分析】

    (1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;

    (2)由题意设计在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.

    【详解】

    解:(1)画树状图如下:

    ∵共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,

    ∴第二次取出的数字小于第一次取出的数字的概率是

    (2)设计:在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?

    ∵共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,

    ∴两次抽中的卡片上的数都是偶数的概率是.

    【点睛】

    本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比.

     

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试课时练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了下列事件是必然发生的事件是,下列事件中是必然事件的是,下列四幅图的质地大小等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步训练题,共19页。试卷主要包含了在一个不透明的布袋中,红色,一个不透明的口袋里有红,下列事件中,属于随机事件的是,任意掷一枚骰子,下列事件中,下列说法错误的是,下列事件中是必然事件的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试同步测试题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步测试题,共23页。试卷主要包含了下列事件为随机事件的是,下列事件,你认为是必然事件的是,下列事件是必然发生的事件是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map