北京课改版七年级下册第八章 因式分解综合与测试课时练习
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列因式分解正确的是,计算的值是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算错误的是( )A. B. C. D.(a≠0)2、下列各因式分解正确的是( )A. B.C. D.3、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+14、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.5、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)6、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.7、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.8、计算的值是( )A. B. C. D.29、一元二次方程x2-3x=0的根是( )A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-310、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:________.2、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.3、单项式4m2n2与12m3n2的公因式是________.4、分解因式:________.5、分解因式:________.三、解答题(5小题,每小题10分,共计50分)1、分解因式(1); (2)2、分解因式:a3﹣a2b﹣4a+4b.3、阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:===(1)利用分组分解法分解因式: ①; ② (2)因式分解:=_______(直接写出结果).4、分解因式:.5、分解因式(1)4x2-16; (2)16-m2;(3) ; (4)9a2(x﹣y)+4b2(y﹣x). ---------参考答案-----------一、单选题1、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.2、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可.【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.3、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.4、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.5、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.6、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.7、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.8、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:.故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9、C【解析】【分析】利用提公因式法解一元二次方程.【详解】解: x2-3x=0或故选:C.【点睛】本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.10、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、【解析】【分析】直接根据提公因式法因式分解即可.【详解】解:,故答案为:.【点睛】本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.2、2或-2##-2或2【解析】【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:∵a2b2+a2+b2+1=4ab,∴a2b2-2ab+1+a2-2ab+b2=0,∴(ab-1)2+(a-b)2=0,又∵(ab-1)2≥0,(a-b)2≥0,∴ab-1=0,a-b=0,∴ab=1,a=b,∴a2=1,∴a=±1,∴a=b=1或a=b=-1,当a=b=1时,a+b=2;当a=b=-1时,a+b=-2,故答案为:2或-2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.3、4m2n2【解析】【分析】找到系数的公共部分,再找到因式的公共部分即可.【详解】解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2.故答案为4m2n2.【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.4、3 a(a-2)【解析】【分析】分析提取公因式3a,进而分解因式即可.【详解】3a²-6a=3a(a-2),故答案为3a(a-2).【点睛】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5、【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=,=故答案为:.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题1、(1);(2).【解析】【分析】(1)先提取公因式 再利用完全平方公式进行分解即可;(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.【详解】(1)解:原式= = (2)解:原式= = =【点睛】本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.2、(a﹣b)(a+2)(a﹣2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a3﹣a2b﹣4a+4b=(a3﹣4a)﹣(a2b﹣4b)=a(a2﹣4)﹣b(a2﹣4)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.3、(1)① ;②;(2).【解析】【分析】(1)仿照题目所给例题进行分组分解因式即可;(2)利用平方差和完全平方公式进行分解因式即可.【详解】解:(1)①;②==;(2),故答案为:.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式分方法.4、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式===【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.5、(1);(2);(3);(4).【解析】【分析】(1)(4)先提取公因式,再利用平方差公式继续分解即可;(2)(3)利用平方差公式分解即可.【详解】解:(1)4x2-16=4(x2-4)=4(x+2)(x-2);(2)16-m2=(4+)( 4-);(3);(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)-4b2(x﹣y)=(x﹣y)(9a2-4b2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列多项式因式分解正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了把分解因式的结果是.,下列运算错误的是,若x2+ax+9=等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共16页。试卷主要包含了下列变形,属因式分解的是,多项式与的公因式是,下列运算错误的是等内容,欢迎下载使用。