初中数学第八章 因式分解综合与测试课后练习题
展开
这是一份初中数学第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了将分解因式,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)2、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.3、下列因式分解正确的是( )A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)4、下列各式中,由左向右的变形是分解因式的是( )A. B.C. D.5、判断下列不能运用平方差公式因式分解的是( )A.﹣m2+4 B.﹣x2–y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)26、将分解因式,正确的是( )A. B.C. D.7、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.8、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,309、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.10、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:xy2﹣4x=_____;因式分解(a﹣b)2+4ab=_____.2、在实数范围内因式分解:x2﹣6x+1=_____.3、分解因式:3ab﹣6a2=__________.4、若x+y=5,xy=6,则x2y﹣xy2的值为 ___.5、多项式a3﹣4a可因式分解为_____.三、解答题(5小题,每小题10分,共计50分)1、因式分解.(1)(2)(3)2、(1)计算:(2)计算:(3)分解因式:;(4)分解因式:.3、分解因式:(1);(2)4、分解因式:.5、分解因式:. ---------参考答案-----------一、单选题1、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.2、C【解析】【分析】根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.【详解】解:A、,则原等式不成立,此项不符题意;B、等式的右边不是乘积的形式,则此项不符题意;C、是因式分解,此项符合题意;D、等式右边中的不是整式,则此项不符题意;故选:C.【点睛】本题考查了因式分解的定义,熟记定义是解题关键.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C.【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、B【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.5、B【解析】【分析】根据平方差公式:进行逐一求解判断即可.【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B.【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.6、C【解析】【分析】直接利用提取公因式法进行分解因式即可.【详解】解:+==;故选C.【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.7、C【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误.【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键.8、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.9、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.10、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.二、填空题1、 x(y+2)(y-2)##x(y-2)(y+2) (b+a)2##(a+b)2【解析】【分析】原式提公因式x,再利用平方差公式分解即可;原式整理后,利用完全平方公式分解即可.【详解】解:xy2-4x=x(y2-4)=x(y+2)(y-2);(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:x(y+2)(y-2);(a+b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式时一定要分解彻底.2、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.3、【解析】【分析】利用提公因式法进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键.4、6或-6##-6或6【解析】【分析】先利用完全平方公式并根据已知条件求出x-y的值,再利用提公因式法和平方差公式分解因式,然后整体代入数据计算.【详解】解:∵x+y=5,xy=6,∴(x-y)2=(x+y)2-4xy=1,∴x-y=±1,∴x2y-xy2=xy(x-y)=6(x-y),当x-y=1时,原式=6×1=6;当x-y=-1时,原式=6×(-1)=-6.故答案为:6或-6.【点睛】本题主要考查了提公因式法分解因式,根据完全平方式的两个公式之间的关系求出(x-y)的值是解本题的关键,也是难点.5、【解析】【分析】利用提公因式法、公式法进行因式分解即可.【详解】解:原式=,故答案为:.【点睛】本题考查提公因式法、公式法分解因式,掌握公式的结构特征是正确应用的前提.三、解答题1、(1);(2);(3)【解析】【分析】(1)由题意直接根据完全平方差公式即可进行因式分解;(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.【详解】解:(1)(2)(3)【点睛】本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键.2、(1);(2);(3);(4).【解析】【分析】(1)根据多项式乘以单项式,利用多项式的每一项分别与单项式相乘,再把积相加进行计算即可;(2)首先计算小括号,再合并化简中括号里面,最后计算除法即可.(3)原式提取公因式即可;(4)原式利用平方差公式 分解即可.【详解】解:(1)原式;(2)原式,.(3)原式;(4)原式.【点睛】此题主要考查了整式的混合运算和提公因式法与公式法的综合运用,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算.3、(1);(2)【解析】【分析】(1)利用完全平方公式进行分解因式,即可解答;(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.【详解】(1)原式,,;(2)原式,,,,.【点睛】本题考查了因式分解,解决本题的关键是熟记因式分解的方法.4、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式===【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.5、.【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
相关试卷
这是一份2021学年第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份数学北京课改版第八章 因式分解综合与测试练习,共15页。试卷主要包含了因式分解,多项式与的公因式是等内容,欢迎下载使用。
这是一份数学北京课改版第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了把代数式分解因式,正确的结果是,下列分解因式正确的是,把分解因式的结果是.等内容,欢迎下载使用。