初中北京课改版第八章 因式分解综合与测试同步训练题
展开这是一份初中北京课改版第八章 因式分解综合与测试同步训练题,共17页。试卷主要包含了能利用进行因式分解的是,下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1
2、下列各式中,正确的因式分解是( )
A.
B.
C.
D.
3、下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
4、下列各组式子中,没有公因式的一组是( )
A.2xy与x B.(a﹣b)2与a﹣b
C.c﹣d与2(d﹣c) D.x﹣y与x+y
5、若可以用公式进行分解因式,则的值为( )
A.6 B.18 C. D.
6、能利用进行因式分解的是( )
A. B. C. D.
7、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
8、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
9、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
10、可以被24和31之间某三个整数整除,这三个数是( )
A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,30
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:______.
2、已知a2+a-1=0,则a3+2a2+2021=________.
3、分解因式:3y2﹣12=______________.
4、因式分解:2a2﹣4ab+2b2=_____.
5、因式分解: _______________________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
2、分解因式:2a2-8ab+8b2.
3、已知,.求值:(1);(2).
4、把下列各式因式分解:
(1)
(2).
5、阅读与思考:
材料:对于一些次数较高或者是比较复杂的式子进行因式分解时,换元法是一种常用的方法,下面是小影同学用换元法对多项式进行因式分解的过程.
解:设,
原式第一步
第二步
第三步
第四步
(1)小影同学第二步到第三步运用了因式分解的______填写选项.
A.提取公因式
B.平方差公式
C.两数和的平方公式
D.两数差的平方公式
(2)小影同学因式分解的结果是否彻底?______填彻底或不彻底;若不彻底,请你帮她直接写出因式分解的最后结果______.
(3)请你模仿以上方法尝试对多项式进行因式分解.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
2、B
【解析】
【分析】
直接利用公式法以及提取公因式法分解因式,进而判断得出答案.
【详解】
解:.,故此选项不合题意;
.,故此选项符合题意;
.,故此选项不合题意;
.,故此选项不合题意;
故选:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
3、D
【解析】
【分析】
因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
不是化为整式的积的形式,故B不符合题意;
不是化为整式的积的形式,故C不符合题意;
是因式分解,故D符合题意;
故选D
【点睛】
本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.
4、D
【解析】
【分析】
根据公因式是各项中的公共因式逐项判断即可.
【详解】
解:A、2xy与x有公因式x,不符合题意;
B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;
C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;
D、x﹣y与x+y没有公因式,符合题意,
故选:D.
【点睛】
本题考查公因式,熟练掌握确定公因式的方法是解答的关键.
5、D
【解析】
【分析】
根据完全平方公式进行因式分解即可得.
【详解】
解:由题意得:,
即,
则,
故选:D.
【点睛】
本题考查了利用完全平方公式进行因式分解,熟练掌握完全平方公式是解题关键.
6、A
【解析】
【分析】
根据平方差公式进行因式分解即可得.
【详解】
解:A、,此项符合题意;
B、不能利用进行因式分解,此项不符题意;
C、不能利用进行因式分解,此项不符题意;
D、不能利用进行因式分解,此项不符题意;
故选:A.
【点睛】
本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键.
7、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
8、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
9、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
10、B
【解析】
【分析】
先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.
【详解】
解:
所以可以被26,27,28三个整数整除,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.
二、填空题
1、
【解析】
【分析】
先将原式变形为,再利用提公因式法分解即可.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.
2、2022
【解析】
【分析】
将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.
【详解】
解:∵a2+a-1=0,
∴a2=1-a、a2+a=1,
∴a3+2a2+2021,
=a•a2+2(1-a)+2021,
=a(1-a)+2-2a+2021,
=a-a2-2a+2023,
=-a2-a+2023,
=-(a2+a)+2023,
=-1+2023=2022.
故答案为:2022
【点睛】
本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.
3、
【解析】
【分析】
先提取公因式3,然后再根据平方差公式进行因式分解即可.
【详解】
解:;
故答案为.
【点睛】
本题主要考查因式分解,熟练掌握因式分解是解题的关键.
4、
【解析】
【分析】
先提取公因式2,再利用完全平方公式计算可得.
【详解】
解:原式=.
故答案为:
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、
【解析】
【分析】
根据提取公因式和平方差公式进行分解即可;
【详解】
原式;
故答案是:.
【点睛】
本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.
三、解答题
1、
【解析】
【分析】
原式先变形为,再利用提公因式法分解.
【详解】
解:原式=
=
=
【点睛】
本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.
2、2(a-2b)2
【解析】
【分析】
先提取公因式2,再利用完全平方公式因式分解.
【详解】
解:2a2-8ab+8b2
=2(a2-4ab+4b2)
=2(a-2b)2.
【点睛】
本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
3、(1);(2)
【解析】
【分析】
(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;
(2)由可得:由,可得再把分解因式即可得到答案.
【详解】
解:(1) ,,
则
(2)
,
【点睛】
本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)用平方差公式分解即可;
(2)先提取公因式,再用平方差公式分解即可;
【详解】
解:(1)=(a2+1)(a2-1)= ;
(2)
=
=
=.
【点睛】
题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
5、(1) ;(2)不彻底,;(3).
【解析】
【分析】
(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,即可得出选项;
(2)根据完全平方公式中的两数差的平方公式可继续进行因式分解;
(3)根据材料,用换元法进行分解因式即可.
【详解】
解:(1)小影同学第二步到第三步运用了完全平方公式中两数和的平方公式,
故选:C;
(2)小影同学因式分解的结果不彻底,
原式
,
故答案为:不彻底,;
(3)设,
原式,
,
,
,
.
【点睛】
本题考查了因式分解换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.
相关试卷
这是一份数学北京课改版第八章 因式分解综合与测试练习,共15页。试卷主要包含了因式分解,多项式与的公因式是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了下列因式分解正确的是,下列分解因式结果正确的是,已知,,那么的值为等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试复习练习题,共15页。试卷主要包含了下列因式分解中,正确的是,因式分解,若x2+ax+9=等内容,欢迎下载使用。