初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测
展开这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列分解因式结果正确的是,下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知a2-2a-1=0,则a4-2a3-2a+1等于( )
A.0 B.1 C.2 D.3
2、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
3、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
4、下列分解因式结果正确的是( )
A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)
C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)
5、下列因式分解正确的是( )
A. B.
C. D.
6、下列多项式不能用公式法因式分解的是( )
A. B. C. D.
7、下列各组多项式中,没有公因式的是( )
A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2y
C.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b2
8、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
9、下列因式分解正确的是( )
A. B.
C. D.
10、下列因式分解正确的是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_________.
2、已知ab=2,a﹣b=﹣4,则a2b﹣ab2=___.
3、因式分解:﹣3x3+12x=___.
4、分解因式:﹣x2y+6xy﹣9y=___.
5、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.
三、解答题(5小题,每小题10分,共计50分)
1、把下列各式因式分解:
(1) (2)
2、因式分解:
(1); (2).
3、因式分解.
(1)
(2)
(3)
4、分解因式:
(1)4x2y﹣4xy2+y3.
(2)(a2+9)2﹣36a2.
5、因式分解:(x2+9)2﹣36x2.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.
【详解】
解:∵a2﹣2a﹣1=0,
∴a2﹣2a=1,
∴a4﹣2a3﹣2a+1
=a2(a2﹣2a)﹣2a+1
=a2﹣2a+1
=1+1
=2.
故选:C.
【点睛】
此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.
2、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.
【详解】
A. ,变形是整式乘法,不是因式分解,故A错误;
B. ,右边不是几个因式乘积的形式,故B错误;
C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;
D. ,变形是整式乘法,不是因式分解,故D错误.
【点睛】
本题考查因式分解的定义,掌握因式分解的定义是解题的关键.
3、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
4、D
【解析】
【分析】
分别对四个选项进行因式分解,然后进行判断即可.
【详解】
解:A、原式=b(a2+7a-1),故不符合题意;
B、原式=3y(x2﹣x+2),故不符合题意;
C、原式=2xy(4z﹣3xy),故不符合题意;
D、原式=﹣2a(a﹣2b+3c),故符合题意.
故选D.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.
5、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
6、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
7、D
【解析】
【分析】
直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.
【详解】
解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;
B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;
C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;
D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了公因式,掌握确定公因式的方法是解题关键.
8、C
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.
【详解】
解:A、,则原等式不成立,此项不符题意;
B、等式的右边不是乘积的形式,则此项不符题意;
C、是因式分解,此项符合题意;
D、等式右边中的不是整式,则此项不符题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记定义是解题关键.
9、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
二、填空题
1、
【解析】
【分析】
根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解.
【详解】
解:∵分解因式x2+ax+b时,甲看错了b,分解结果为,
∴在=x2+6x+8中,a=6是正确的,
∵分解因式x2+ax+b时,乙看错了a,分解结果为,
∴在=x2+10x+9中,b=9是正确的,
∴x2+ax+b=x2+6x+9=.
故答案为:
【点睛】
本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.
2、-8
【解析】
【分析】
将提取公因式,在整体代入求值即可.
【详解】
∵,,
∴.
故答案为:-8.
【点睛】
本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键.
3、
【解析】
【分析】
先提公因式,然后再利用平方差公式求解即可.
【详解】
解:
故答案为
【点睛】
此题考查了因式分解的方法,熟练掌握提公因式法和平方差公式是解题的关键.
4、
【解析】
【分析】
根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
【详解】
解:﹣x2y+6xy﹣9y
故答案为:.
【点睛】
此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
5、﹣2ab(2a﹣b)2
【解析】
【分析】
先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式=﹣2ab(4a2﹣4ab+b2)
=﹣2ab(2a﹣b)2,
故答案为:﹣2ab(2a﹣b)2.
【点睛】
本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.
三、解答题
1、(1);(2)
【解析】
【分析】
(1) 提取公因式,即可得到答案;
(2)先把原式化为,再提取公因式,即可得到答案 .
【详解】
(1),
原式 ;
(2) ,
原式,
.
【点睛】
本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.
2、(1);(2).
【解析】
【分析】
(1)提取公因式,进行因式分解;
(2)提取公因式后,再利用平方差公式进行因式分解.
【详解】
解:(1);
(2),
.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.
3、(1);(2);(3)
【解析】
【分析】
(1)由题意直接根据完全平方差公式即可进行因式分解;
(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;
(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.
【详解】
解:(1)
(2)
(3)
【点睛】
本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键.
4、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.
【解析】
【分析】
(1)原式提取公因式y,再利用完全平方公式分解即可;
(2)原式先利用平方差公式,进一步用完全平方公式分解即可.
【详解】
解:(1)原式=y(4x2﹣4xy+y2)
=y(2x﹣y)2;
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列分解因式结果正确的是,下列各因式分解正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第八章 因式分解综合与测试习题,共16页。试卷主要包含了下列因式分解正确的是,下列分解因式结果正确的是,把代数式分解因式,正确的结果是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份七年级下册第八章 因式分解综合与测试达标测试,共16页。试卷主要包含了下列多项式,下列各因式分解正确的是等内容,欢迎下载使用。