![京改版七年级数学下册第八章因式分解专项测评试卷(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12687930/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第八章因式分解专项测评试卷(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12687930/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第八章因式分解专项测评试卷(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12687930/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第八章 因式分解综合与测试练习
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,下列因式分解正确的是,下列各因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )
A.2 B.3 C.4 D.5
2、下列因式分解正确的是( )
A. B.
C. D.
3、计算的值是( )
A. B. C. D.2
4、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
5、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
6、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
7、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
8、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
9、下列各因式分解正确的是( )
A. B.
C. D.
10、下列多项式中有因式x﹣1的是( )
①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2
A.①② B.②③ C.②④ D.①④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,,则的值为______.
2、把多项式2m+4mx+2x分解因式的结果为____________.
3、因式分解:______;______.
4、因式分解:2a2-4a-6=________.
5、分解因式_______.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1)
(2)
(3)
2、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
3、因式分解:.
4、将下列多项式进行因式分解:
(1);
(2).
5、把下列各式因式分解:
(1) (2)
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据十字相乘法进行因式分解的方法,对选项逐个判断即可.
【详解】
解:A、,不能用十字相乘法进行因式分解,不符合题意;
B、,不能用十字相乘法进行因式分解,不符合题意;
C、,能用十字相乘法进行因式分解,符合题意;
D、,不能用十字相乘法进行因式分解,不符合题意;
故选C
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.
2、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
3、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
4、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
5、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.
6、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】
解:A.,单项式不能因式分解,故此选项不符合题意;
B.,是因式分解,故此选项符合题意;
C.,是整式计算,故此选项不符合题意;
D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
7、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
8、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、D
【解析】
【分析】
利用提公因式法、公式法逐项进行因式分解即可.
【详解】
解:A、,所以该选项不符合题意;
B、,所以该选项不符合题意;
C、是整式的乘法,所以该选项不符合题意;
D、,所以该选项符合题意;
故选:D.
【点睛】
本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.
10、D
【解析】
【分析】
根据十字相乘法把各个多项式因式分解即可判断.
【详解】
解:①x2+x﹣2=;
②x2+3x+2=;
③x2﹣x﹣2=;
④x2﹣3x+2=.
∴有因式x﹣1的是①④.
故选:D.
【点睛】
本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.
二、填空题
1、±1
【解析】
【分析】
先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值.
【详解】
解:,
,
,
,
,
;
故答案为:.
【点睛】
此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想.
2、
【解析】
【分析】
根据提公因式法因式分解,提公因式因式分解即可
【详解】
解:2m+4mx+2x
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
3、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:;
.
故答案为:,.
【点睛】
本题考查了用公式法分解因式,熟练掌握公式法分解因式是解决本题的关键.
4、2(a-3)(a+1)## 2(a+1)(a-3)
【解析】
【分析】
提取公因式2,再用十字相乘法分解因式即可.
【详解】
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点睛】
本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
5、
【解析】
【分析】
把原式化为,再利用完全平方公式分解因式即可.
【详解】
解:
故答案为:
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.
三、解答题
1、(1);(2);(3)
【解析】
【分析】
(1)原式提取公因式后,利用平方差公式分解即可;
(2)原式先利用完全平方公式,再利用平方差公式分解即可;
(3)原式利用平方差公式分解即可.
【详解】
解:(1)a;
(2);
(3)
【点睛】
本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键.
2、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
3、
【解析】
【分析】
首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.
【详解】
解:原式
.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
4、(1);(2).
【解析】
【分析】
(1)提取公因式然后利用完全平方公式进行因式分解即可;
(2)提取公因式然后利用平方差公式进行因式分解即可.
【详解】
解:(1)原式;
(2)原式.
【点睛】
此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.
5、(1);(2)
【解析】
【分析】
(1) 提取公因式,即可得到答案;
(2)先把原式化为,再提取公因式,即可得到答案 .
【详解】
(1),
原式 ;
(2) ,
原式,
.
【点睛】
本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习,共18页。试卷主要包含了下列分解因式结果正确的是,把分解因式的结果是.,下列因式分解正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试精练,共16页。试卷主要包含了下列多项式因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。