初中北京课改版第八章 因式分解综合与测试同步达标检测题
展开
这是一份初中北京课改版第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各因式分解正确的是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将分解因式,正确的是( )A. B.C. D.2、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab33、下列各式中,不能用平方差公式分解因式的是( )A. B. C. D.4、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-95、下列各因式分解正确的是( )A. B.C. D.6、下列各式从左至右是因式分解的是( )A. B.C. D.7、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)8、下列多项式不能用公式法因式分解的是( )A. B. C. D.9、下列从左边到右边的变形,属于因式分解的是( )A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣110、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:______.2、填空:x2-2x+__________=(x-__________)2.3、分解因式:25x2﹣16y2=_____.4、在实数范围内因式分解:x2﹣6x+1=_____.5、已知a2+a-1=0,则a3+2a2+2021=________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)2a3﹣8ab2;(2)(a2+1)2﹣4a2.2、(1)计算:2·+; (2)因式分解:3+12+12x.3、分解因式:(1)3a2﹣6a+3 (2)(x2+y2)2﹣4x2y24、(Ⅰ)先化简,再求值:,其中,;(Ⅱ)分解因式:① ;② .5、因式分解:(1)3a²c-6abc+3b²c(2)x²(m-2n)+y²(2n-m)(3)(4)(x﹣1)(x﹣3)+1 ---------参考答案-----------一、单选题1、C【解析】【分析】直接利用提取公因式法进行分解因式即可.【详解】解:+==;故选C.【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.2、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.3、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.故选B.【点睛】本题考查了平方差公式分解因式.关键要掌握平方差公式.4、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.5、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可.【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.6、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.8、C【解析】【分析】A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.【详解】解:A.a2-8a+16=(a-4)2,故选项A不符合题意;B. ,故选项B不符合题意;C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.9、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.10、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、##【解析】【分析】先提取公因式,然后利用平方差公式进行因式分解即可.【详解】解:,故答案为: .【点睛】题目主要考查因式分解的提公因式法和平方差公式法的综合运用,熟练掌握因式分解方法是解题关键.2、 1 1【解析】【分析】根据配方法填空即可,加上一次项系数一半的平方.【详解】故答案为:1,1【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.3、##【解析】【分析】利用平方差公式计算即可.【详解】解:原式==,故答案为:.【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键.4、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、2022【解析】【分析】将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.【详解】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2021,=a•a2+2(1-a)+2021,=a(1-a)+2-2a+2021,=a-a2-2a+2023,=-a2-a+2023,=-(a2+a)+2023,=-1+2023=2022.故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.三、解答题1、(1);(2).【解析】【分析】(1)综合利用提公因式法和平方差公式分解因式即可得;(2)综合利用平方差公式()和完全平方公式()分解因式即可得.【详解】解:(1)原式,;(2)原式,.【点睛】本题考查了因式分解,熟练掌握乘法公式是解题关键.2、(1)0;(2)3x【解析】【分析】(1)根据题意,得·=,,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可.【详解】(1)2·+原式=2+-3=0.(2)原式=3x(+4x+4)=3x.【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.3、(1);(2)【解析】【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.【详解】(1),,;(2),,,,.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.4、(Ⅰ),;(Ⅱ)①;②【解析】【分析】(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.【详解】解:(Ⅰ)原式当、时原式.(Ⅱ)① . ② .【点睛】本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.5、(1);(2);(3);(4)【解析】【分析】(1)原式提取公因式3c,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式提取公因式2,再利用完全平方公式分解即可;(4)先计算多项式乘多项式,再利用公式法因式分解即可.【详解】(1) (2).(3)==(4)===.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了已知,,那么的值为,下列因式分解正确的是等内容,欢迎下载使用。
这是一份2021学年第八章 因式分解综合与测试同步达标检测题,共15页。试卷主要包含了下列变形,属因式分解的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后复习题,共15页。试卷主要包含了下列运算错误的是,下列因式分解正确的是等内容,欢迎下载使用。