2021学年第八章 因式分解综合与测试同步达标检测题
展开这是一份2021学年第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列因式分解正确的是,下列因式分解正确的是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
2、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )
A.2 B.3 C.4 D.5
3、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
4、下列由左到右的变形,是因式分解的是( )
A. B.
C. D.
5、下列因式分解正确的是( )
A. B.
C. D.
6、下列因式分解正确的是( ).
A. B.
C. D.
7、下列因式分解正确的是( )
A. B.
C. D.
8、下列各式能用完全平方公式进行因式分解的是( )
A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9
9、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
10、一元二次方程x2-3x=0的根是( )
A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:________.
2、分解因式:2x2-4x=_____.
3、分解因式:______.
4、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_________.
5、因式分解___________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:.
2、分解因式:
(1);
(2).
3、(Ⅰ)先化简,再求值:,其中,;
(Ⅱ)分解因式:① ;② .
4、因式分解:① ②
5、分解因式:
(1);
(2).
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
不是化为整式的积的形式,故B不符合题意;
不是化为整式的积的形式,故C不符合题意;
是因式分解,故D符合题意;
故选D
【点睛】
本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.
2、C
【解析】
【分析】
根据十字相乘法进行因式分解的方法,对选项逐个判断即可.
【详解】
解:A、,不能用十字相乘法进行因式分解,不符合题意;
B、,不能用十字相乘法进行因式分解,不符合题意;
C、,能用十字相乘法进行因式分解,符合题意;
D、,不能用十字相乘法进行因式分解,不符合题意;
故选C
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.
3、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
4、A
【解析】
【分析】
根据因式分解的定义,对各选项作出判断,即可得出正确答案.
【详解】
解:A、,是因式分解,故此选项符合题意;
B、,原式分解错误,故本选项不符合题意;
C、右边不是整式的积的形式,故本选项不符合题意;
D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
5、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
6、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
7、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
8、A
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
【详解】
A. 9x2-6x+1 ,故该选项正确,符合题意;
B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
故选A
【点睛】
此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
9、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
10、C
【解析】
【分析】
利用提公因式法解一元二次方程.
【详解】
解: x2-3x=0
或
故选:C.
【点睛】
本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.
二、填空题
1、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
2、##
【解析】
【分析】
根据提公因式法因式分解即可
【详解】
解:2x2-4x=
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.
3、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
4、
【解析】
【分析】
根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解.
【详解】
解:∵分解因式x2+ax+b时,甲看错了b,分解结果为,
∴在=x2+6x+8中,a=6是正确的,
∵分解因式x2+ax+b时,乙看错了a,分解结果为,
∴在=x2+10x+9中,b=9是正确的,
∴x2+ax+b=x2+6x+9=.
故答案为:
【点睛】
本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.
5、
【解析】
【分析】
先提公因式再根据平方差公式因式分解即可
【详解】
解:
故答案为:
【点睛】
本题考查了提公因式和公式法因式分解,掌握因式分解的方法是解题的关键.
三、解答题
1、
【解析】
【分析】
先提取公因式,然后利用十字相乘和平方差公式分解因式即可.
【详解】
解:原式=
=
=.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.
2、(1);(2)
【解析】
【分析】
(1)提取m,后用完全平方公式分解;
(2)提取a-b,后用平方差公式分解.
【详解】
解:(1)原式
.
(2)原式
.
【点睛】
本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.
3、(Ⅰ),;(Ⅱ)①;②
【解析】
【分析】
(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.
(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.
【详解】
解:(Ⅰ)原式
当、时
原式.
(Ⅱ)①
.
②
.
【点睛】
本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.
4、①;②
【解析】
【分析】
(1)原式先提取公因式,再运用平方差公式进行因式分解即可;
(2)原式先提取公因式,再运用平方差公式进行因式分解即可.
【详解】
解:①
=
=
②
=
=
=
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
5、(1);(2)
【解析】
【分析】
(1)先提取公因式,然后再根据平方差公式进行因式分解即可;
(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列多项式,下列多项式因式分解正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共17页。试卷主要包含了下列因式分解正确的是,下列各式的因式分解中正确的是等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试精练,共15页。试卷主要包含了下列因式分解正确的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。