![精品解析2022年京改版七年级数学下册第八章因式分解章节练习试卷(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12687979/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第八章因式分解章节练习试卷(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12687979/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第八章因式分解章节练习试卷(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12687979/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第八章 因式分解综合与测试练习
展开这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列变形,属因式分解的是( )
A. B.
C. D.
2、下列从左边到右边的变形,属于因式分解的是( )
A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1
C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣1
3、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
4、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
5、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )
A.216 B.108
C.140 D.684
6、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
7、下列各组多项式中,没有公因式的是( )
A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2y
C.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b2
8、下列各式从左到右的变形是因式分解的是( )
A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2
C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)
9、下列各式中从左到右的变形中,是因式分解的是( )
A. B.
C. D.
10、下列各组式子中,没有公因式的一组是( )
A.2xy与x B.(a﹣b)2与a﹣b
C.c﹣d与2(d﹣c) D.x﹣y与x+y
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:﹣x2y+6xy﹣9y=___.
2、填空:x2-2x+__________=(x-__________)2.
3、分解因式:______.
4、因式分解:(x2+y2)2﹣4x2y2=________
5、单项式2x2y3与6xy的公因式是_______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解
(1); (2).
2、分解因式:.
3、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程
解:设x2+2x=y,
原式 =y(y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2+2x+1)2 (第四步)
(1)该同学第二步到第三步运用了因式分解的( )
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后?
.(填“是”或“否”)如果否,直接写出最后的结果
(3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.
4、因式分解:
(1);
(2) (7x2+2y2)2﹣(2x2+7y2)2
5、将下列多项式分解因式:
(1)
(2)
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
2、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.
【详解】
解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;
x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;
x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;
(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;
故选A
【点睛】
本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.
3、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
4、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
5、D
【解析】
【分析】
根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.
【详解】
边长为a,b的长方形的周长为18,面积为12,
,,
故选D
【点睛】
本题考查了因式分解,代数式求值,整体代入是解题的关键.
6、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
7、D
【解析】
【分析】
直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.
【详解】
解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;
B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;
C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;
D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了公因式,掌握确定公因式的方法是解题关键.
8、D
【解析】
【分析】
根据因式分解的定义对各选项进行逐一分析即可.
【详解】
解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;
故选:D.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
9、C
【解析】
【分析】
由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、,是整式的乘法,不是因式分解故A错误;
B、,是整式不是因式分解;
C、,是因式分解;
D、右边不是整式的积的形式(含有分式),不是因式分解;
故选:C.
【点睛】
本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
10、D
【解析】
【分析】
根据公因式是各项中的公共因式逐项判断即可.
【详解】
解:A、2xy与x有公因式x,不符合题意;
B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;
C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;
D、x﹣y与x+y没有公因式,符合题意,
故选:D.
【点睛】
本题考查公因式,熟练掌握确定公因式的方法是解答的关键.
二、填空题
1、
【解析】
【分析】
根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
【详解】
解:﹣x2y+6xy﹣9y
故答案为:.
【点睛】
此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
2、 1 1
【解析】
【分析】
根据配方法填空即可,加上一次项系数一半的平方.
【详解】
故答案为:1,1
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
3、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
4、(x-y)2(x+y)2
【解析】
【分析】
根据平方差公式和完全平方公式因式分解即可;
【详解】
原式,
;
故答案是:.
【点睛】
本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.
5、2xy
【解析】
【分析】
由公因式的定义进行判断,即可得到答案.
【详解】
解:根据题意,
2x2y3与6xy的公因式是2xy.
故答案为:2xy.
【点睛】
本题考查了公因式的定义,解题的关键是熟记定义进行解题.
三、解答题
1、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式分解因式即可;
(2)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.
2、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
3、(1)C;(2)否,;(3)
【解析】
【分析】
(1)根据题意可知,第二步到第三步用到了完全平方公式;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;
(3)仿照题意,设然后求解即可.
【详解】
解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,
故选C;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,
∴分解分式的结果为:,
故答案为:否,;
(3)设
∴
.
【点睛】
本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.
4、(1);(2)
【解析】
【分析】
(1)先提出公因式,再利用完全公式,即可求解;
(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
5、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份2021学年第八章 因式分解综合与测试综合训练题
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时训练,共14页。试卷主要包含了若x2+ax+9=,计算的值是,将分解因式,正确的是,下列因式分解正确的是,下列多项式等内容,欢迎下载使用。