初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试单元测试一课一练
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试单元测试一课一练,共18页。
京改版七年级数学下册第九章数据的收集与表示单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A.最高分 B.中位数 C.极差 D.平均分2、一组数据2,9,5,5,8,5,8的中位数是( )A.2 B.5 C.8 D.93、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名C.平均数是8.5小时 D.众数是8小时4、下面调查中,最适合采用全面调查的是( )A.对全国中学生视力状况的调查 B.了解重庆市八年级学生身高情况C.调查人们垃圾分类的意识 D.对“天舟三号”货运飞船零部件的调查5、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是( )A.90 B.90.3 C.91 D.926、某校“安全知识”比赛有16名同学参加,规定前8名的同学进入决赛.若某同学想知道自己能否晋级,不仅要了解自己的成绩,还需要了解16名参赛同学成绩的( )A.平均数 B.中位数 C.众数 D.方差7、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.频数直方图8、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )A.6 B.5 C.4 D.39、要调查下列问题,适合采用普查的是( )A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况10、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )A.96.00,95.70 B.96.00,96.00C.96.00,82.50 D.95.70,96.00第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列抽样调查较科学的有________.①小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝;②小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况;③小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;④小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查.2、为了解某渔场中青鱼的平均质量,宜采用______的方式(填“普查”或“抽样调查”).3、若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则_______叫做这n个数的加权平均数.4、数据8、9、8、10、8、8、10、7、9、8的中位数是________,众数是__________.5、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:分数段(分)61-7071-8081-9091-100人数(人)丄正上正一止(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.三、解答题(5小题,每小题10分,共计50分)1、某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.(1)这10天中,日最高气温的众数是多少?(2)计算这10天日最高气温的平均值.2、如图是连续十周测试甲、乙两名运动员体能情况的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表: 平均数(分)中位数(分)体能测试成绩合格次数(次)甲 乙 (2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好;②依据平均数与中位数比较甲和乙, 的体能测试成绩较好; (3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.3、八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)(1)这个班的学生人数为______人;(2)将图①中的统计图补充完整;(3)完成课外数学作业的时间的中位数在______时间段内;(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?4、在A,B,C,D四块试验田进行水稻新品种种植试验,各块试验田的面积和所种水稻的单位产量如下表: ABCD单位产量/()8250787571256375面积/4312则四块试验田中水稻的平均单位产量是多少?5、小明想调查某个高速公路入口处每天的汽车流量(单位:辆).一天,他从上午8:00~11:00在该入口处,每隔相等的一段时间作一次统计,共统计了8次,数据如下:记录的次数第一次第二次第三次第四次第五次第六次第七次第八次3min内通过的汽车流量5150646258555553试估计:这天上午这3h内共有多少车次通过该入口? ---------参考答案-----------一、单选题1、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.2、B【解析】【分析】先将数据按从小到大排列,取中间位置的数,即为中位数.【详解】解:将改组数据从小到大排列得:2,5,5,5,8,8,9,中间位置的数为:5,所以中位数为5.故选:B.【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.3、D【解析】【分析】根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.【详解】解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;C. 平均数是小时,故原选项判断错误,不合题意;D. 众数是8小时,故原选项判断正确,符合题意.故选:D【点睛】本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.4、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:.对全国中学生视力状况的调查,适合抽样调查,故本选项不合题意;.了解重庆市八年级学生身高情况,适合抽样调查,故本选项不合题意;.调查人们垃圾分类的意识,适合抽样调查,故本选项不合题意;.对“天舟三号”货运飞船零部件的调查,适合普查,故本选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【解析】【分析】根据加权平均数计算.【详解】解:小明的平均成绩为分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.6、B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知16人成绩的中位数是第8名和第9名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于16个人中,第8和第9名的成绩的平均数是中位数,故同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这16位同学的成绩的中位数.故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.【详解】解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.8、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.9、C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.【详解】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意; B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意; C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意; D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意. 故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【解析】【分析】众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.【详解】解:在这一组数据中96.00是出现次数最多的,故众数是96.00;将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.故选:B.【点睛】本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.二、填空题1、①④.【解析】【分析】根据抽样调查的方式逐个分析即可【详解】小华为了知道烤箱内的面包是否熟了,任意取出一小块品尝,故①的调查方法合适,符合题意;琪为了了解某市2007年的平均气温,应该查询每个月的气温情况,故②的调查方法不科学,不符合题意;小明为了了解初中三个年级学生的平均身高,应该在七、八、九年级各抽一个班学生做调查,故③的调查方法不科学,不符合题意;小智为了了解初中三个年级学生的平均体重,在七、八、九年级各抽一个班学生进行调查,故③的调查方法符合题意.综上所述,符合题意的有①④.故答案为①④.【点睛】本题考查了抽样调查,理解抽样调查的方式是解题的关键.2、抽样调查【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此分析即可.【详解】依题意,为了解某渔场中青鱼的平均质量,调查范围广,费时费力,宜采用抽样调查的方式.故答案为:抽样调查.【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.3、【解析】【分析】根据加权平均数的计算方法求解即可得.【详解】解:根据题意可得:加权平均数为:,故答案为:.【点睛】题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.4、 8 8【解析】【分析】根据中位数的定义:一组数据中处在最中间的数或处在最中间的两个数的平均数;众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:把这组数据从小到大排列为:7,8,8,8,8,8,9,9,10,10,∵处在最中间的两个数分别为8,8,∴中位数,∵8出现了四次,出现的次数最多,∴众数为8,故答案为:8,8.【点睛】本题主要考查了求众数和求中位数,解题的关键在于能够熟练掌握相关知识进行求解.5、 20 20%【解析】【分析】(1)观察表格,求各段的人数的和即可;(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.【详解】(1)参加这次演讲比赛的人数:2+8+6+4=20(人);(2)成绩在91~100分的同学为优胜者,优胜率为:.故答案为:20,20%.【点睛】本题考查了统计表,读懂统计表中的信息是解题的关键.三、解答题1、(1)35℃;(2)34.3℃【解析】【分析】(1)根据所占比例最大即可确定众数;(2)先求出各温度占总天数的百分比的和,再除以即可.【详解】解:(1)根据扇形统计图,35℃占的比例最大,因此日平均气温的众数是35℃;(2)这10天日最高气温的平均值是:(℃).【点睛】本题考查的是扇形统计图、求众数、平均数,解题的关键是能从扇形统计图中获取信息.2、(1)见解析;(2)①乙;②甲;(3)乙【解析】【分析】(1)根据折线统计图的数据,分别求得平均数,中位数,以及合格的次数,再填表即可;(2)由于甲、乙的平均成绩一致,根据合格次数与中位数的大小比较即可求得答案;(3)根据折线统计图中甲、乙的趋势和成绩合格的次数分析即可求得.【详解】解:(1)根据折线统计图可知甲的成绩分别为,乙的成绩分别为则甲的平均分为,将甲的成绩从小到大排列:,则甲的中位数为,合格次数为2次乙的平均分为,乙的中位数为,合格次数为4次填表如下 平均数(分)中位数(分)体能测试成绩合格次数(次)甲60652乙6057.54 (2)依据平均数与成绩合格的次数比较甲和乙,甲、乙的平均成绩一致,乙的合格次数比甲的多,故乙的体能测试成绩较好;依据平均数与中位数比较甲和乙,甲、乙的平均成绩一致,甲的中位数分数较高,故甲的体能测试成绩较好;故答案为:乙,甲(3)从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.【点睛】本题考查了折线统计图,求一组数据的平均数,求一组数据的中位数,看懂统计图是解题的关键.3、(1)40;(2)补图见解析;(3)1~1.5;(4)125名.【解析】【分析】(1)利用1~1.5小时的频数和百分比即可求得总数;(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.【详解】解:(1)(1)根据题意得:该班共有的学生是:=40(人);这个班的学生人数为40人;(2)0.5~1小时的人数是:40×30%=12(人),如图: (3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;(4)∵超过1.5小时有10人,占总数的.∴答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.【点睛】本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.4、7650【解析】【分析】根据样本平均数的求法易得答案.【详解】解:平均单位产量.【点睛】本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.5、3360车次【解析】【分析】根据表中数据先计算出每3min的平均汽车流量,然后计算总的时间通过的车次即可.【详解】解:每3min的平均汽车流量为:(辆).所以,可以估计这天上午这3h通过该入口的车次大约为:(车次),答:这天上午3h内共有3360车次通过该入口.【点睛】题目主要考查平均数的实际应用,利用平均数据求出总数,理解题意中利用平均数求总数据的大小是解题关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试一课一练,共17页。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了下列问题不适合用全面调查的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步练习题,共18页。