初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习,共20页。试卷主要包含了下列调查中,最适合采用全面调查,下列说法中正确的是,下列调查中,适合采用全面调查等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数 B.方差 C.平均数 D.众数
2、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量
3、下列调查中,最适合采用抽样调查的是( )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
4、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
5、2021年正值中国共产党建党100周年,某校开展“敬建党百年,传承红色基因”读书活动.为了了解某班开展的学习党史情况,该校随机抽取了9名学生进行调查,他们读书的本数分别是3、2、3、2、5、1、2、5、4,则这组数据的众数是( )
A.2 B.3 C.3和5 D.5
6、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )
姓名 | 平时 | 期中 | 期末 | 总评 |
小明 | 90 | 90 | 85 |
|
A.86分 B.87分 C.88分 D.89分
7、下列说法中正确的是( )
A.样本7,7,6,5,4的众数是2
B.样本2,2,3,4,5,6的中位数是4
C.样本39,41,45,45不存在众数
D.5,4,5,7,5的众数和中位数相等
8、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.
成绩/分 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
人数 | ■ | ■ | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 12 |
下列关于成的统计量中、与被遮盖的数据无关的是( )
A.平均数 B.中位数
C.中位数、众数 D.平均数、众数
9、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
10、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹克销售量如表:
尺码 | 39 | 40 | 41 | 42 | 43 |
平均每天销售量/件 | 10 | 12 | 20 | 12 | 12 |
如果每件夹克的利润相同,你认为该店主最关注销售数据的统计量是____.(填写“平均数”或“中位数”或“众数”)
2、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:
①2013~2017年,某市研究与试验经费支出连年增高;
②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;
③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.
3、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
测试项目 | 测试成绩 | |
甲 | 乙 | |
面试 | 90 | 95 |
综合知识测试 | 85 | 80 |
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
4、第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:
听说过 | 不知道 | 清楚 | 非常清楚 |
A | B | 225 | C |
根据以上信息求得“非常清楚”所占扇形的百分比为__%.
5、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)
(1)这个班的学生人数为______人;
(2)将图①中的统计图补充完整;
(3)完成课外数学作业的时间的中位数在______时间段内;
(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?
2、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?
(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.
3、为了响应“全民全运,同心同行”的号召,某学校要求学生积极加强体育锻炼,坚持做跳绳运动,跳绳可以让全身肌肉匀称有力,同时会让呼吸系统、心脏、心血管系统得到充分锻炼,学校为了了解学生的跳绳情况,在九年级随机抽取了10名男生和10名女生,测试了这些学生一分钟跳绳的个数,测试结果统计如下:请你根据统计图提供的信息,回答下列问题:
(1)所测学生一分钟跳绳个数的众数是_____________,中位数是_______________;
(2)求这20名学生一分钟跳绳个数的平均数;
4、抽样调查了20名同学的打字速度(字/min),结果如下:15,18,10,32,8,12,13,17,9,9,27,18,4,6,11,14,16,21,25,12,求这20人打字的平均速度,你可以尝试用计算器解决.
5、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:
(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;
(2)求本次所抽取学生九月份“读书量”的平均数.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
2、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、A
【解析】
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、A
【解析】
【分析】
找到这组数据中出现次数最多的数,即可求解.
【详解】
解:这组数据3,2,3,2,5,1,2,5,4中,出现次数最多的是2分,因此众数是2;
故选:A.
【点睛】
本题考查众数的定义,属于基础题型.
6、B
【解析】
【分析】
根据加权平均数的公式计算即可.
【详解】
解:小明该学期的总评得分=分.
故选项B.
【点睛】
本题考查加权平均数,掌握加权平均数公式是解题关键.
7、D
【解析】
【分析】
根据众数定义和中位数定义对各选项进行一一分析判定即可.
【详解】
A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;
B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确;
C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;
D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.
故选D.
【点睛】
本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.
8、C
【解析】
【分析】
通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.
【详解】
解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),
成绩为100分的,出现次数最多,因此成绩的众数是100,
成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,
因此中位数和众数与被遮盖的数据无关,
故选:C.
【点睛】
本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.
9、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
二、填空题
1、众数
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量;销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,故影响该店主决策、引起店主最关注的统计量是众数.
故答案为:众数.
【点睛】
此题主要考查众数的应用,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
2、①③
【解析】
【分析】
根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.
【详解】
解:因为,
所以2013~2017年,某市研究与试验经费支出连年增高,①正确;
2014年比2013年实际增长量为(亿元),
2015年比2014年实际增长量为(亿元),
2016年比2015年实际增长量为(亿元),
2017年比2016年实际增长量为(亿元),
由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;
因为115.2>100.6,
所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;
综上,正确的有①③,
故答案为:①③.
【点睛】
本题考查了统计图,读懂统计图是解题关键.
3、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
4、30
【解析】
【分析】
由“清楚”扇形所对应的圆心角可得其占总体的百分比,再根据各项百分比之和为1可得答案.
【详解】
解:∵“清楚”的人数占总人数的百分比为×100%=25%,
∴“非常清楚”扇形所占的百分比为1﹣(30%+15%+25%)=30%,
故答案为:30.
【点睛】
本题主要考查扇形统计图,掌握整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键.
5、108°
【解析】
【分析】
先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:,利用360°×30%计算即可.
【详解】
解:统计的人数为:60+90+150=300人,
骑自行车的人数为:90人,
骑自行车的人数所占百分比为:,
∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.
故答案为:108°.
【点睛】
本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.
三、解答题
1、(1)40;(2)补图见解析;(3)1~1.5;(4)125名.
【解析】
【分析】
(1)利用1~1.5小时的频数和百分比即可求得总数;
(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;
(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;
(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.
【详解】
解:(1)(1)根据题意得:
该班共有的学生是:=40(人);
这个班的学生人数为40人;
(2)0.5~1小时的人数是:40×30%=12(人),
如图:
(3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;
(4)∵超过1.5小时有10人,占总数的.
∴
答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.
【点睛】
本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.
2、(1)全面调查;(2)抽样调查;(3)抽样调查
【解析】
【分析】
根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.
3、(1)160个,160个(2)155个
【解析】
【分析】
(1)根据众数和中位数的定义求出即可;
(2)根据加权平均数公式求出答案即可.
【详解】
解:(1)由统计图可知:跳绳个数100个的有1人,跳绳个数120个的有1人,跳绳个数140个的有6人,跳绳个数160个的有8人,跳绳个数180个的有2人,跳绳个数200个的有2人,
所以众数为160个,中位数是(160+160)÷2=160(个),
故答案为:160个,160个;
(2)这20名学生一分钟跳绳个数的平均数是=155(个),
答:这20名学生一分钟跳绳个数的平均数是155个.
【点睛】
本题考查了众数、中位数、平均数等知识点,能熟记众数和中位数的定义和加权平均数的公式是解此题的关键.
4、14.85字/min
【解析】
【分析】
平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:,
,
14.85(字/min)
答:这20人打字的平均速度是14.85字/min.
【点睛】
本题主要考查了算术平均数,理解算术平均数的定义和求法是解题关键.
5、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.
【解析】
【分析】
(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;
(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.
【详解】
解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,
∴众数为:3;
抽取的学生总数为:人,
第30、31人“读书量”均为3本,
∴中位数为:3;
故答案为:3;3;
(2)学生“读书量”的总数为:
(本),
抽取的学生总数由(1)可得:60人,
平均数为:(本),
∴本次所抽取学生九月份“读书量”的平均数为3本.
【点睛】
题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.
相关试卷
这是一份初中北京课改版第九章 数据的收集与表示综合与测试测试题,共16页。试卷主要包含了下列调查中,最适合抽样调查的是,下列调查中,适合采用全面调查等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试一课一练,共19页。试卷主要包含了某中学七,下列调查中,最适合采用全面调查,水果店内的5个苹果,其质量等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了以下调查中,适宜全面调查的是,某教室9天的最高室温统计如下等内容,欢迎下载使用。