终身会员
搜索
    上传资料 赚现金

    2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案

    立即下载
    加入资料篮
    2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案第1页
    2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案第2页
    2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案第3页
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案

    展开

    这是一份2022高考数学一轮复习第三章函数概念与基本初等函数第4讲函数性质的综合问题学案,共7页。


    第4讲 函数性质的综合问题


          函数的单调性与奇偶性
    (1)设f(x)是定义在[-2b,3+b]上的偶函数,且在[-2b,0]上为增函数,则f(x-1)≥f(3)的解集为(  )
    A.[-3,3] B.[-2,4]
    C.[-1,5] D.[0,6]
    (2)(多选)定义在R上的奇函数f(x)为减函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,则下列不等式中成立的是(  )
    A.f(b)-f(-a) B.f(b)-f(-a)>g(a)-g(-b)
    C.f(a)+f(-b) D.f(a)+f(-b)>g(b)-g(-a)
    【解析】 (1)因为f(x)是定义在[-2b,3+b]上的偶函数,
    所以-2b+3+b=0,解得b=3,
    由函数f(x)在[-6,0]上为增函数,得f(x)在[0,6]上为减函数.故f(x-1)≥f(3)⇒f(|x-1|)≥f(3)⇒|x-1|≤3,故-2≤x≤4.
    (2)函数f(x)为R上的奇函数,且为单调减函数,
    偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,
    由a>b>0,得f(a) 对于A,f(b)-f(-a)0上成立),所以A正确;
    对于B,f(b)-f(-a)>g(a)-g(-b)⇔f(b)+f(a)-g(a)+g(b)=2f(b)>0,这与f(b)<0矛盾,所以B错误;
    对于C,f(a)+f(-b) 对于D,f(a)+f(-b)>g(b)-g(-a)⇔f(a)-f(b)-g(b)+g(a)=2[f(a)-f(b)]>0,这与f(a) 【答案】 (1)B (2)AC

    函数的单调性与奇偶性的综合问题解题思路
    (1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于y轴对称的两个区间上具有相反的单调性.
    (2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f(x1)
    1.已知函数f(x)是奇函数,在(0,+∞)上是减函数,且在区间[a,b](a A.有最大值4 B.有最小值-4
    C.有最大值-3 D.有最小值-3
    解析:选B.根据题意作出y=f(x)的简图,由图知,选B.

    2.已知偶函数f(x)的定义域为(-3,3),且f(x)在[0,3)上是减函数,f(m-1)-f(3m-1)>0,则实数m的取值范围是(  )
    A. B.(-∞,0)∪
    C.∪ D.
    解析:选C.因为f(x)为偶函数,且在[0,3)上是减函数,
    所以f(x)在(-3,0)上是增函数.
    f(m-1)-f(3m-1)>0可化为f(m-1)>f(3m-1),
    因为f(x)为偶函数,所以f(m-1)>f(3m-1)即为f(|m-1|)>f(|3m-1|).
    又f(x)在[0,3)上为减函数,
    所以
    解得m∈∪,故选C.

          函数的周期性与奇偶性
    (1)(2021·镇江模拟)已知定义在R上的奇函数f(x),对任意实数x,恒有f(x+3)=-f(x),且当x∈时,f(x)=x2-6x+8,则f(0)+f(1)+f(2)+…+f(2 020)=(  )
    A.6 B.3
    C.0 D.-3
    (2)已知函数y=f(x)满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)= (  )
    A. B.
    C.π D.
    【解析】 (1)根据题意,对任意实数x,恒有f(x+3)=-f(x).则有f(x+6)=-f(x+3)=f(x),即函数f(x)是周期为6的周期函数,又由f(x)为定义在R上的奇函数,得f(0)=0,则f(3)=-f(0)=0.又由当x∈时,f(x)=x2-6x+8,得f(1)=3,f(2)=f(-1+3)=-f(-1)=f(1)=3.
    f(4)=f(1+3)=-f(1)=-3,f(5)=f(2+3)=-f(2)=-3.
    则有f(0)+f(1)+f(2)+f(3)+f(4)+f(5)=0,
    则f(0)+f(1)+f(2)+…+f(2 020)=[f(0)+f(1)+f(2)+…+f(5)]×336+f(0)+f(1)+f(2)+f(3)+f(4)=3.故选B.
    (2)由y=f(-x)和y=f(x+2)是偶函数知f(-x)=f(x),且f(x+2)=f(-x+2),则f(x+2)=f(x-2).
    所以f(x+4)=f(x),则y=f(x)的周期为4.
    所以F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=.
    【答案】 (1)B (2)B

    周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.

    1.已知f(x)是定义在R上以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为(  )
    A.(-1,4) B.(-2,1)
    C.(-1,2) D.(-1,0)
    解析:选A.因为函数f(x)是定义在R上以3为周期的偶函数,所以f(5)=f(-1)=f(1),即<1,化简得(a-4)(a+1)<0,解得-1 2.(2021·全国高考冲刺压轴卷(样卷))已知定义在R上的奇函数y=f(x)满足f(x+8)+f(x)=0,且f(5)=5,则f(2 019)+f(2 024)=(  )
    A.-5 B.5
    C.0 D.4 043
    解析:选B.由f(x+8)+f(x)=0,得f(x+8)=-f(x),所以f(x+16)=-f(x+8)=f(x),故函数y=f(x)是以16为周期的周期函数.在f(x+8)+f(x)=0中,令x=0,得f(8)+f(0)=0,因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0.故f(8)=0.故f(2 024)=f(16×126+8)=f(8)=0.又在f(x+8)+f(x)=0中,令x=-3,得f(5)+f(-3)=0,得f(5)=-f(-3)=f(3)=5,则f(2 019)=f(16×126+3)=f(3)=5,所以f(2 019)+f(2 024)=5.故选B.

          函数的奇偶性、周期性与对称性的综合问题
    (1)若函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则下列结论正确的是(  )
    A.f(1) B.f C.f D.f (2)(多选)(2021·福建高三毕业班质量检查测试)已知f(x)是定义在R上的偶函数,其图象关于点(1,0)对称,下列关于f(x)的结论,正确的是(  )
    A.f(x)是周期函数
    B.f(x)满足f(x)=f(4-x)
    C.f(x)在(0,2)上单调递减
    D.f(x)=cos 是满足条件的一个函数
    【解析】 (1)因为y=f(x+2)是偶函数.所以y=f(x)的图象关于直线x=2对称,所以f(1)=f(3).又f(x)在(0,2)上为增函数,所以f(x)在(2,4)上为减函数,所以f (2)因为f(x)为偶函数,所以f(-x)=f(x),因为f(x)的图象关于点(1,0)对称,则f(-x)=-f(2+x),故f(x+2)=-f(x),故有f(x+4)=-f(x+2)=f(x),即f(x)是以4为周期的周期函数,故A正确;可得f(-x)=f(x)=f(x+4),把x替换成-x可得f(x)=f(4-x),故B正确;f(x)=cos 是定义在R上的偶函数,(1,0)是其图象的一个对称中心,可得D正确;f(x)=-cos 满足题意,但f(x)在(0,2)上单调递增,故C错误.
    【答案】 (1)B (2)ABD

    函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x=0处有定义,则一定有f(0)=0;偶函数一定有f(|x|)=f(x)”在解题中的应用.
    函数f(x)是定义在R上的偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)(  )
    A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
    B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
    C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
    D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数
    解析:选B.由f(x)=f(2-x)得f(x)的图象关于直线x=1对称.又f(x)是偶函数,故函数f(x)的周期是2,f(x)在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.

    思想方法系列4 活用函数性质中的“三个二级”结论
    函数的奇偶性、周期性、对称性及单调性,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
    一、奇函数的最值性质
    已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x) 在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.
    设函数f(x)=的最大值为M,最小值为m,则M+m=________.
    【解析】 函数f(x)的定义域为R,
    f(x)==1+,
    设g(x)=,则g(-x)=-g(x),
    所以g(x)为奇函数,
    由奇函数图象的对称性知g(x)max+g(x)min=0,
    所以M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.
    【答案】 2
    二、抽象函数的周期性
    (1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
    (2)如果f(x+a)=(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
    (3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
    已知函数f(x)为定义在R上的奇函数,当x≥0时,有f(x+3)=-f(x),且当x∈(0,3)时,f(x)=x+1,则f(-2 023)+f(2 024)=(  )
    A.3 B.2
    C.1 D.0
    【解析】 因为函数f(x)为定义在R上的奇函数,
    所以f(-2 023)=-f(2 023).
    因为当x≥0时,有f(x+3)=-f(x),
    所以f(x+6)=-f(x+3)=f(x),即当x≥0时,自变量的值每增加6,对应函数值重复出现一次.
    又当x∈(0,3)时,f(x)=x+1,
    所以f(2 023)=f(337×6+1)=f(1)=2,
    f(2 024)=f(337×6+2)=f(2)=3.
    故f(-2 023)+f(2 024)=-f(2 023)+3=1.
    【答案】 C
    三、抽象函数的对称性
    已知函数f(x)是定义在R上的函数.
    (1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x=对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称.
    (2)若函数y=f(x)满足f(a+x)+f(a-x)=0,即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称.
    (多选)(2021·山东日照联考)已知定义在R上的函数f(x)满足条件f(x+2)=-f(x),且函数f(x-1)为奇函数,则下列结论正确的是(  )
    A.函数f(x)是周期函数
    B.函数f(x)的图象关于点(-1,0)对称
    C.函数f(x)为R上的偶函数
    D.函数f(x)为R上的单调函数
    【解析】 因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)是周期函数,故A正确;
    因为函数f(x-1)为奇函数,所以函数f(x-1)的图象关于原点中心对称,所以函数f(x)的图象关于点(-1,0)对称,故B正确;
    因为函数f(x-1)为奇函数,所以f(-x-1)=-f(x-1),
    根据f(x+2)=-f(x),f(x+1)=-f(x-1),所以f(x+1)=f(-x-1),f(-x)=f(x),即函数f(x)为R上的偶函数,故C正确;
    因为函数f(x-1)为奇函数,所以f(-1)=0,又函数f(x)为R上的偶函数,所以f(1)=0,所以函数f(x)不单调,D不正确.
    【答案】 ABC

    相关学案

    2022高考数学一轮总复习第二章函数概念与基本初等函数第4讲函数性质的综合问题习题课学案文:

    这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第4讲函数性质的综合问题习题课学案文,共7页。

    2022高考数学一轮复习第三章函数概念与基本初等函数第10讲函数模型及其应用学案:

    这是一份2022高考数学一轮复习第三章函数概念与基本初等函数第10讲函数模型及其应用学案,共10页。

    2022高考数学一轮复习第三章函数概念与基本初等函数第9讲函数与方程学案:

    这是一份2022高考数学一轮复习第三章函数概念与基本初等函数第9讲函数与方程学案,共9页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map