年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪科版九年级数学下册第26章概率初步专题测评练习题(无超纲)

    立即下载
    加入资料篮
    2022年必考点解析沪科版九年级数学下册第26章概率初步专题测评练习题(无超纲)第1页
    2022年必考点解析沪科版九年级数学下册第26章概率初步专题测评练习题(无超纲)第2页
    2022年必考点解析沪科版九年级数学下册第26章概率初步专题测评练习题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级下册第26章 概率初步综合与测试精练

    展开

    这是一份九年级下册第26章 概率初步综合与测试精练,共20页。试卷主要包含了如图,有5张形状,下列事件是必然事件的是等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是(    A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯2、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是(  )A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率3、下列说法不正确的是(  )A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间4、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是(    ).A. B. C. D.5、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(    A. B. C. D.6、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是(    A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于77、下列事件是必然事件的是(  )A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天8、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”(  )A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误9、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是(    A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大C.甲、乙获胜的可能性一样大 D.无法判断10、下列说法正确的是(    A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.2、在发展现代化农业的形势下,现有AB两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以AB两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________3、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为_____.4、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以为坐标的点在直线上的概率为______.5、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则abc的大小关系是___________.三、解答题(5小题,每小题10分,共计50分)1、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.2、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.3、钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”学校为鼓励学生抗疫期间在家阅读,组织九年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生______人,并将条形统计图补充完整;(2)在九年级1000名学生中,读书15本及以上(含15本)的学生估计有多少人?(3)在九年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.4、防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从乙测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.5、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率. -参考答案-一、单选题1、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.2、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.4、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5、A【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:∵总可能结果有4种,摸到标号大于2的结果有2种,∴从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.6、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a2≥0,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.8、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为∴乙的答案正确综上所述甲、乙答案均正确.故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.9、A【分析】根据事件发生的可能性即可判断.【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当∴甲获胜的可能性比乙大故选A.【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.10、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.二、填空题1、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.【详解】从五张卡片中任取两张的所有可能情况有如下10种:12,红13,红1绿1,红1绿2,红232绿1,红2绿2,红3绿1,红3绿2,绿1绿2其中两张卡片的颜色不同且标号之和小于4的有3种情况:1绿1,红1绿2,红2绿1故所求的概率为P=故答案为:【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.2、②③【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,故答案为:②③【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.3、【分析】根据简单概率的概率公式进行计算即可,概率=所求情况数与总情况数之比.【详解】解:共有5中等可能结果,其中大于2的有3种,则从中随机摸出一个小球,其标号大于2的概率为故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、【分析】首先画出树状图即可求得所有等可能的结果与点(ab)在直线上的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中点(ab)在直线上的有3种结果,所以点(ab)在直线上的概率为故答案为:【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5、cab【分析】根据概率公式分别求出各事件的概率,故可求解.【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为abc的大小关系是cab故答案为:cab【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.三、解答题1、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗株数为40×10%=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解.【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:40×10%=4株,∴当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.2、【分析】根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.【详解】解:由题意可得,所有等可能的情况如下:             白色1白色2红色白色1 (白色2,白色1)(红色,白色1)白色2(白色1,白色2) (红色,白色2)红色(白色1,红色)(白色2,红色) 由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,∴一次摸出两个球“都是白球”的概率=【点睛】本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3、(1)50,图见解析;(2)500人;(3)图表见解析,【分析】(1)由题意根据C的人数和所占的百分比,可以求得本次共抽查学生人数,然后即可计算出读书10本的人数,从而可以将条形统计图补充完整;(2)由题意根据条形统计图中的数据,可以计算出读书15本及以上(含15本)的学生估计有多少人;(3)根据题意,可以画出相应的树状图,从而可以求出恰好是两位男生分享心得的概率.【详解】解:(1)本次共抽查学生14÷28%=50(人),故答案为:50;50-9-14-7-4=16(人),补全的条形统计图如图所示,(2)(人),即读书15本及以上(含15本)的学生估计有500人.(3)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1);(2)【分析】(1)根据题意直接利用概率公式求解即可得出答案;(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得.【详解】解:(1)小明从乙测温通道通过的概率是故答案为:(2)列表格如下: 甲,甲乙,甲丙,甲甲,乙乙,乙丙,乙C甲,丙乙,丙丙,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.5、(1)(2)两次都是红球的概率为【分析】(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.(1)解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,其中是黄球的可能有一种,故答案为:(2)四个球简写为“红1,红2,黄,蓝”,列表法为: 红1红2红1(红1,红1)(红1,红2)(红1,黄)(红1,蓝)红2(红2,红1)(红2,红2)(红2,黄)(红2,蓝)(黄,红1)(黄,红2)(黄,黄)(黄,蓝)(蓝,红1)(蓝,红2)(蓝,黄)(蓝,蓝)共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为:【点睛】题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键. 

    相关试卷

    数学九年级下册第26章 概率初步综合与测试当堂检测题:

    这是一份数学九年级下册第26章 概率初步综合与测试当堂检测题,共20页。试卷主要包含了下列说法中,正确的是,下列判断正确的是,下列事件中,是必然事件的是,在一个不透明的盒子中装有红球,下列事件中,属于不可能事件的是,下列事件是必然发生的事件是等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试当堂检测题:

    这是一份数学九年级下册第26章 概率初步综合与测试当堂检测题,共17页。

    初中沪科版第26章 概率初步综合与测试练习:

    这是一份初中沪科版第26章 概率初步综合与测试练习,共18页。试卷主要包含了下列事件是必然发生的事件是,下列说法中正确的是,下列事件中,属于必然事件的是,下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map