![2022年沪科版九年级数学下册第26章概率初步专项攻克试卷(含答案解析)第1页](http://www.enxinlong.com/img-preview/2/3/12688634/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪科版九年级数学下册第26章概率初步专项攻克试卷(含答案解析)第2页](http://www.enxinlong.com/img-preview/2/3/12688634/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪科版九年级数学下册第26章概率初步专项攻克试卷(含答案解析)第3页](http://www.enxinlong.com/img-preview/2/3/12688634/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第26章 概率初步综合与测试练习
展开这是一份2020-2021学年第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列说法错误的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,属于必然事件的是( )
A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球
C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边
2、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是( )
A. B. C. D.
3、下列事件是必然发生的事件是( )
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
4、下列说法错误的是( )
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
5、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )
A.有道理,池中大概有1200尾鱼 B.无道理
C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼
6、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )
A. B. C. D.
7、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
8、下列事件中,是必然事件的是( )
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
9、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
10、 “2022年春节期间,中山市会下雨”这一事件为( )
A.必然事件 B.不可能事件 C.确定事件 D.随机事件
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.
2、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是________.
3、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是 _____.
4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
5、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _______.
三、解答题(5小题,每小题10分,共计50分)
1、我市举行了某学科实验操作考试,有A,B,C,D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.
(1)小厉参加实验D考试的概率是______;
(2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
2、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,3;乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部).
(1)转动甲转盘,指针指向3的概率是 ;
(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率.
3、一只不透明的袋子中装有三个质地、大小都相同的小球,球面上分别标有数字-1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点M的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点M的纵坐标.
(1)用树状图或列表等方法,列出所有可能出现的结果;
(2)求事件A“点M落在第二象限”的概率P(A).
4、一个不透明的盒子里装有5个黑球,2个白球和若干个黄球.它们除颜色不同外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)求盒子里有几个黄球?
(2)小张和小王将盒子中的黑球取出4个,利用剩下的球进行摸球游戏.他们约定:先摸出1个球后不放回,再摸出1个球,若这两个球中有黄球,则小张胜,否则小王胜、你认为这个游戏公平吗?请用列表或画树状图说明理由.
5、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.
抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.
(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率.
-参考答案-
一、单选题
1、D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解;A、小明买彩票中奖是随机事件,不符合题意;
B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;
C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;
D、三角形两边之和大于第三边是必然事件,符合题意;
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、B
【分析】
根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.
【详解】
解:随机掷一枚质地均匀的硬币三次,
根据树状图可知至少有两次正面朝上的事件次数为:4,
总的情况为8次,
故至少有两次正面朝上的事件概率是:.
故选:B.
【点睛】
本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.
3、A
【分析】
根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.
【详解】
解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;
B、明天的气温一定比今天的高,是随机事件,不符合题意;
C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;
D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.
故选:A.
【点睛】
本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.
4、D
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;
B. 不可能事件发生的概率是0,故该选项正确,不符合题意;
C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;
D. 概率很小的事件也可能发生,故该选项不正确,符合题意;
故选D
【点睛】
本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
5、A
【分析】
设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.
【详解】
解:设池中大概有鱼x尾,由题意得:,
解得:,
经检验:是原方程的解;
∴池塘主的做法有道理,池中大概有1200尾鱼;
故选A.
【点睛】
本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.
6、A
【分析】
用红球的个数除以所有球的个数即可求得抽到红球的概率.
【详解】
解:∵共有5个球,其中红球有2个,
∴P(摸到红球)=,
故选:A.
【点睛】
此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.
7、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
8、D
【分析】
根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.
【详解】
解:A、刚到车站,恰好有车进站是随机事件;
B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;
C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;
D、任意画一个三角形,其外角和是360°是必然事件;
故选D.
【点睛】
本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.
9、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
10、D
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、
【分析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.
【详解】
解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小强平局的概率为:,
故答案为:.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
2、13
【分析】
总数量乘以摸到红球的频率的稳定值即可.
【详解】
解:根据题意知,布袋中红球的个数大约是20×0.65=13,
故答案为:13.
【点睛】
本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、
【分析】
先画树状图列出所有等可能结果,从中找到使方程有两个不相等的实数根,即m>n的结果数,再根据概率公式求解可得.
【详解】
解:画树状图如下:
由树状图知,共有12种等可能结果,其中能使方程x2-mx+n=0有两个不相等的实数根,即m2-4n>0,m2>4n的结果有4种结果,
∴关于x的一元二次方程x2-mx+n=0有两个不相等的实数根的概率是,
故答案为:.
【点睛】
本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.
4、
【分析】
根据概率公式计算即可
【详解】
共有个球,其中黑色球3个
从中任意摸出一球,摸出白色球的概率是.
故答案为:
【点睛】
本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.
5、
【分析】
先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.
【详解】
解:列表如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,
所以所选代表恰好为1名女生和1名男生的概率是:
故答案为:
【点睛】
本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.
三、解答题
1、
(1)
(2)
【分析】
(1)根据概率公式即可得;
(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.
(1)
解:小厉参加实验考试的概率是,
故答案为:;
(2)
解:列表如下:
| ||||
所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,,,,4种情况,
所以小王、小张抽到同一个实验的概率为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
2、(1);(2).
【分析】
(1)利用概率公式求解指针指向3的概率即可;
(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可.
【详解】
解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;
所以转动甲转盘,指针指向3的概率是:
故答案为:;
(2)列表如下:
| 1 | 2 | 3 | 4 |
1 | 和2 | 和3 | 和4 | 和5 |
2 | 和3 | 和4 | 和5 | 和6 |
3 | 和4 | 和5 | 和6 | 和7 |
所有的等可能的结果数有12种,和为5的结果数有3种,
所以转动两个转盘指针指向的两个数字和是5的概率.
【点睛】
本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.
3、(1)树状图见解析,(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2);(2)
【分析】
(1)根据题意画出树状图,并列出所有可能出现的结果;
(2)根据(1)的树状图求事件A“点M落在第二象限”的概率P(A)
【详解】
解:(1)可画树状图如下:
由此可知点M的坐标有以下六种等可能性:(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2).
(2)上面六种等可能性中第二象限的点M为(-1,2)、(-1,3)两种,
∴事件A“点M落在第二象限”的概率为P(A)=
【点睛】
本题考查了树状图法求概率,第二象限点的坐标特征,掌握树状图法求概率是解题的关键.
4、
(1)布袋里有1个黄球
(2)公平,表格见解析
【分析】
(1)设布袋里黄球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
(1)
解:设布袋里黄球有x个,
根据题意,得:,
解得:x=1,
经检验:x=1是原分式方程的解,
所以布袋里有1个黄球;
(2)
解:公平;
列表如下:
| 白 | 白 | 黑 | 黄 |
白 |
| (白,白) | (白,黑) | (白,黄) |
白 | (白,白) |
| (白,黑) | (白,黄) |
黑 | (黑,白) | (黑,白) |
| (黑,黄) |
黄 | (黄,白) | (黄,白) | (黄,黑) |
|
由表知,共有12种等可能结果,其中两个球中有黄球的有6种情况,两个球中没有黄球的有6种情况,
∴P(小张胜)=P(小王胜)= ,
∴这个游戏公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
5、
(1)随机;随机;
(2)
【分析】
(1)根据随机事件和不可能事件的概念及概率公式解答可得;
(2)列举出所有情况,看所求的情况占总情况的多少即可.
(1)
解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,
第一次抽取卡片抽中小会的概率是;
(2)
解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)
由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,
所以小月被选中的概率=.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试一课一练,共18页。试卷主要包含了下列说法错误的是,下列事件中,属于不可能事件的是,下列事件是必然事件的是,下列说法中正确的是,下列事件是随机事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时训练,共18页。试卷主要包含了下列事件中,属于必然事件的是,下列判断正确的是,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。