数学九年级下册第26章 概率初步综合与测试课后练习题
展开这是一份数学九年级下册第26章 概率初步综合与测试课后练习题,共19页。试卷主要包含了下列事件中,属于随机事件的是,下列事件中,是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )
A. B. C. D.
2、下列说法中正确的是( )
A.一组数据2、3、3、5、5、6,这组数据的众数是3
B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1
C.为了解长沙市区全年水质情况,适合采用全面调查
D.画出一个三角形,其内角和是180°为必然事件
3、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
4、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
5、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )
A. B. C. D.
6、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
7、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )
A. B. C. D.
8、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
9、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
10、下列事件中,是必然事件的是( )
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某批青稞种子在相同条件下发芽试验结果如下表:
每次试验粒数 | 50 | 100 | 300 | 400 | 600 | 1000 |
发芽频数 | 47 | 96 | 284 | 380 | 571 | 948 |
估计这批青稞发芽的概率是___________.(结果保留到0.01)
2、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.
3、学校决定从甲、乙、丙三名学生中随机抽取两名介绍学习经验,则同时抽到乙、丙两名同学的概率为_____.
4、如图,在3×3正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使△ABC为等腰三角形的概率是_____.
5、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.
三、解答题(5小题,每小题10分,共计50分)
1、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.
(1)求摸出一个球是白球的概率.
(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).
2、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)这次调查的总人数是 人;
(2)扇形统计图中,B类扇形的圆心角是 °;
(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.
3、如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.
4、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:该排球社团一共有 名女同学,a= .
(2)把频数分布直方图补充完整.
(3)随机抽取1名学生,估计这名学生身高高于160cm的概率.
5、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道.他们抽签占跑道.
(1)若甲抽到2道,则乙抽到3道的概率是______________;
(2)请列表或画树状图求甲、乙在相邻跑道的概率.
-参考答案-
一、单选题
1、A
【分析】
根据概率公式计算即可.
【详解】
解:袋中装有3个红球和5个绿球共8个球,
从袋中随机摸出1个球是红球的概率为,
故选:A.
【点睛】
此题考查了概率的计算公式,正确掌握计算公式是解题的关键.
2、D
【分析】
根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.
【详解】
A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;
B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;
D. 画出一个三角形,其内角和是180°为必然事件,正确;
故选D.
【点睛】
此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.
3、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
4、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
5、C
【分析】
用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.
【详解】
解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,
位于“---”(图中虚线)的上方的有2处,
所以“馬”随机移动一次,到达的位置在“---”上方的概率是,
故选:C.
【点睛】
本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
6、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
7、A
【分析】
首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.
【详解】
解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,
∴正面都朝上的概率是: .
故选A.
【点睛】
本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.
8、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.
9、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
10、D
【分析】
根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.
【详解】
解:A、刚到车站,恰好有车进站是随机事件;
B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;
C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;
D、任意画一个三角形,其外角和是360°是必然事件;
故选D.
【点睛】
本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.
二、填空题
1、0.95
【分析】
利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.
【详解】
观察表格得到这批青稞发芽的频率稳定在0.95附近,
则这批青稞发芽的概率的估计值是0.95,
故答案为:0.95.
【点睛】
此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.
2、
【分析】
根据题意,分,时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.
【详解】
解:当时,该方程不是一元二次方程,
当时,
解得
时,关于x的一元二次方程有实数解
随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是
故答案为:
【点睛】
本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
3、
【分析】
画树状图,共有6种等可能的结果,同时抽到乙、丙两名同学的结果有2个,再由概率公式解题.
【详解】
解:画树状图如图:
共有6个等可能的结果,同时抽到乙、丙两名同学的结果有2个,
∴同时抽到乙、丙两名同学的概率为,
故答案为:.
【点睛】
本题考查列树状图表示概率,是重要考点,掌握相关知识是解题关键.
4、
【分析】
分三种情况:①点A为顶点;②点B为顶点;③点C为顶点;得到能使△ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解.
【详解】
如图,∵AB=,
∴①若AB=AC,符合要求的有3个点;
②若AB=BC,符合要求的有2个点;
③若AC=BC,不存在这样格点.
∴这样的C点有5个.
∴能使△ABC为等腰三角形的概率是.
故答案为:.
【点睛】
此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5、
【分析】
根据简单概率公式进行计算即可.
【详解】
解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.
则指针对准红色区域的可能性大小是
故答案为:
【点睛】
本题考查了几何概率,立即题意是解题的关键.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式列式计算即可得解;
(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解.
【详解】
解(1)摸出一个球的所有可能结果总数,摸到是白球的可能结果数,
摸出一个球是白球的概率为.
(2)画树状图如下:
由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,
所以两次摸出颜色相同的球的概率.
【点睛】
本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率所求情况数与总情况数之比
2、(1)40;(2)108;(3)
【分析】
(1)根据A类别人数及其所占百分比可得被调查的总人数;
(2)用360°乘以B类别人数所占比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.
【详解】
解:(1)参加这次调查的学生总人数为6÷15%=40(人);
故答案为:40;
(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,
故答案为:108;
(3)画树状图为:
共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,
∴所抽取的2名学生恰好是1名男生和1名女生的概率为.
【点睛】
本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.
3、见解析,
【分析】
画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:画树状图如下:
由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果,
∴(两个数字之和是偶数).
【点睛】
本题考查了利用列表法与树状图法求概率,根据列表法和树状图法展示所有可能的结果,再从中选出符合条件的结果是解题关键.
4、(1)100,30;(2)见解析;(3)0.55
【分析】
(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;
(2)根据(1)中的结论补全统计图即可;
(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率
【详解】
解:(1)总人数为:;
组的人数为
故答案为:
(2)如图,
(3)总人数为,身高高于160cm为
随机抽取1名学生,估计这名学生身高高于160cm的概率为
【点睛】
本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.
5、(1);(2)
【分析】
(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=.
(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为.
【详解】
(1)∵甲已经抽到2号跑道
∴乙只能在1、3、4三条跑道中抽取
∴乙抽到3道的概率P=
(2)如图所示列表格
可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道
故甲、乙在相邻跑道的概率为.
【点睛】
本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法.列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:.
相关试卷
这是一份2021学年第26章 概率初步综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试测试题,共19页。试卷主要包含了不透明的布袋内装有形状,下列说法正确的是,下列事件中是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题,共20页。试卷主要包含了下列说法中,正确的是,下列事件中是必然事件的是,下列事件中,属于不可能事件的是等内容,欢迎下载使用。