数学九年级下册第26章 概率初步综合与测试习题
展开这是一份数学九年级下册第26章 概率初步综合与测试习题,共22页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是.等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).
A. B. C. D.
2、下列事件是必然事件的是( )
A.同圆中,圆周角等于圆心角的一半
B.投掷一枚均匀的硬币100次,正面朝上的次数为50次
C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天
D.把一粒种子种在花盆中,一定会发芽
3、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )
A. B. C. D.
4、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
5、下列事件中,是必然事件的是( )
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
6、成语“守株待兔”描述的这个事件是( )
A.必然事件 B.确定事件 C.不可能事件 D.随机事件
7、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
8、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )
A. B. C. D.
9、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是( )
A.1 B. C. D.
10、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.
2、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是________.
3、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
4、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_______.
5、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.
三、解答题(5小题,每小题10分,共计50分)
1、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):
(1)小李共抽取了 名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为 ,请补全条形统计图;
(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;
(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.
2、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).
甲种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 6 | 12 | 6 | |
乙种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 12 | 6 | 12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
3、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.
(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;
(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.
4、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)
(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;
(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大
5、如图,某校开设了A、B、C三个测温通道.某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
-参考答案-
一、单选题
1、B
【分析】
根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.
【详解】
解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:
| 跳 | 坐 | 握 |
跳 | (跳,跳) | (跳,坐) | (跳,握) |
坐 | (坐,跳) | (坐,坐) | (坐,握) |
握 | (握,跳) | (握,坐) | (握,握) |
由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,
则两人抽到跳远的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.
2、C
【分析】
直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.
【详解】
A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;
B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;
C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;
D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、C
【分析】
用3的倍数的个数除以数的总数即为所求的概率.
【详解】
解:∵1到10的数字中是3的倍数的有3,6,9共3个,
∴卡片上的数字是3的倍数的概率是.
故选:C.
【点睛】
本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
4、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
5、D
【分析】
根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.
【详解】
解:A、刚到车站,恰好有车进站是随机事件;
B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;
C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;
D、任意画一个三角形,其外角和是360°是必然事件;
故选D.
【点睛】
本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.
6、D
【分析】
根据必然事件、不可能事件、随机事件的概念进行解答即可.
【详解】
解:“守株待兔”是随机事件.
故选D.
【点睛】
本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、C
【分析】
根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.
【详解】
解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:
| 业 | 睡 | 机 | 读 | 体 |
业 |
| (业,睡) | (业,机) | (业,读) | (业,体) |
睡 | (睡,业) |
| (睡,机) | (睡,读) | (睡,体) |
机 | (机,业) | (机,睡) |
| (机,读) | (机,体) |
读 | (读,业) | (读,睡) | (读,机) |
| (读,体) |
体 | (体,业) | (体,睡) | (体,机) | (体,读) |
|
根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,
∴ 抽到“作业”和“手机”的概率为:,
故选:C.
【点睛】
题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.
9、D
【分析】
根据概率公式求解即可.
【详解】
∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,
∴.
故选:D.
【点睛】
本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.
10、C
【分析】
可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【详解】
画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选C.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
二、填空题
1、
【分析】
由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.
【详解】
解:P(红球)=
故答案为:
【点睛】
本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.
2、
【分析】
两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率.
【详解】
第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状图如下:
两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种
则小明正好穿的是相同的一双袜子的概率是
故答案为:
【点睛】
本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率.
3、0.9
【分析】
根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.
【详解】
解:由题意可得:长方形的面积为,
∵骰子落在会徽图案上的频率稳定在0.15左右,
∴会徽图案的面积为:,
故答案为:.
【点睛】
题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.
4、1
【分析】
设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案.
【详解】
解:设黄球的个数为x个,
根据题意得:,
解得:x=1,
经检验,x=1是原分式方程的解,
∴黄球的个数为1个.
故答案为:1.
【点睛】
此题考查了分式方程的应用,以及概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
5、12
【分析】
根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.
【详解】
解:由题意知摸到黄色球的频率稳定在40%,
所以摸到白色球的概率:1-40%=60%,
因为不透明的布袋中,有黄色、白色的玻璃球共有20个,
所以布袋中白色球的个数为20×60%=12(个),
故答案为:12.
【点睛】
本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.
三、解答题
1、(1)100,126°,条形统计图见解析;(2)700;(3)
【分析】
(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;
(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;
(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.
【详解】
(1)C等级的人数和所占比可得抽取的总人数为:(名),
∴“优秀”等级对应的扇形圆心角度数为:,
B等级的人数为:(名),
D等级的人数为:(名),
∴补全条形统计图如下所示:
(2)(名),
∴该校竞赛成绩“优秀”的学生人数为700名;
(3)∵抽取不及格的人数有5名,其中有2名女生,
∴有3名男生,
设3名男生分别为,,,2名女生分别为,,列表格如下所示:
| |||||
| |||||
| |||||
| |||||
| |||||
|
∴总的结果有20种,一男一女的有12种,
∴回访到一男一女的概率为.
【点睛】
本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.
2、
(1)摇出一红一白的概率=
(2)选择甲品牌化妆品,理由见解析
【分析】
(1)让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较即可.
(1)
解:树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
摇出一红一白的概率=;
(2)
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.
乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.
∴选择甲品牌化妆品.
【点睛】
本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
3、(1);(2).
【分析】
(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;
(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可.
【详解】
解:(1)列表如下:
| D | J | S | F |
D | (D,D) | (J,D) | (S,D) | (F,D) |
J | (D,J) | (J,J) | (S,J) | (F,J) |
S | (D,S) | (J,S) | (S,S) | (F,S) |
F | (D,F) | (J,F) | (S,F) | (F,F) |
所有等可能的情况数为16种,两人抽到同一景点的结果有4种,
所以两人抽到同一景点的概率为.
(2)列表如下:
| D | J | S | F |
D |
| (J,D) | (S,D) | (F,D) |
J | (D,J) |
| (S,J) | (F,J) |
S | (D,S) | (J,S) |
| (F,S) |
F | (D,F) | (J,F) | (S,F) |
|
所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,
所以两人抽到动物园和森林公园的概率为.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
4、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【分析】
(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
(2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.
【详解】
(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,
共有6种等可能的结果数,其中三题全答对的结果数为1
所以小明顺利通关的概率=
故通关的概率为
(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:
或
共有6种等可能的结果数,其中三题全答对的结果数为1,
所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=
若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)
共有8种等可能的结果数,其中三题全答对的结果数为1
所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=
故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
5、(1);(2)小明和小丽从同一个测温通道通过的概率为.
【分析】
(1)直接根据概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:(1)小明从A测温通道通过的概率是,
故答案为:;
(2)根据题意列表如下:
| A | B | C |
A | AA | BA | CA |
B | AB | BB | CB |
C | AC | BC | CC |
由表可知,共有9种等可能结果,其中小明和小丽从同一个测温通道通过的有3种结果,
则小明和小丽从同一个测温通道通过的概率为=.
【点睛】
本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共17页。试卷主要包含了下列事件中,是必然事件的是,下列说法中正确的是,在一个不透明的布袋中,红色,下列事件中,属于不可能事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时作业,共20页。试卷主要包含了下列事件中,是必然事件的是,下列事件中,属于必然事件的是,下列说法中正确的是,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份沪科版第26章 概率初步综合与测试课时作业,共19页。试卷主要包含了下列事件是必然发生的事件是,下列事件是随机事件的是,下列说法不正确的是等内容,欢迎下载使用。