沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题
展开
这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了下列事件中,属于必然事件的是,下列说法中,正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于72、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.A.12 B.15 C.18 D.543、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是( )A. B. C. D.4、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )A. B. C. D.5、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为76、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )A. B. C. D.7、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A.0.560 B.0.580 C.0.600 D.0.6208、下列事件中,属于必然事件的是( )A.任意购买一张电影票,座位号是奇数B.抛一枚硬币,正面朝上C.五个人分成四组,这四组中有一组必有2人D.打开电视,正在播放动画片9、下列说法中,正确的是( )A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得10、下列词语所描述的事件,属于必然事件的是( )A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.2、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为______.3、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.4、农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子;②当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98.其中不合理的是 _____.(只填序号)5、某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率 通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).三、解答题(5小题,每小题10分,共计50分)1、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.2、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有 人;(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.3、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同).现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率.4、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是________;(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗.若不是,有利于谁.请你用概率知识(列表或画树状图)加以分析说明.5、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率. -参考答案-一、单选题1、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意.故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.3、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:.故选:B.【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.4、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,∴恰好有两次正面朝上的事件概率是:.故选C.【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.5、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.6、B【分析】先画出树状图,再根据概率公式即可完成.【详解】所画树状图如下: 事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:故选:B【点睛】本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.7、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.8、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意购买一张电影票,座位号是奇数是随机事件;B、抛一枚硬币,正面朝上是随机事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、打开电视,正在播放动画片是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.故选择B.【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.10、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.守株待兔是随机事件,故该选项不符合题意;B.水中捞月是不可能事件,故该选项不符合题意;C.水滴石穿是必然事件,故该选项符合题意;D.缘木求鱼是不可能事件,故该选项不符合题意.故选:C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.二、填空题1、【分析】直接根据几何概率求解即可.【详解】解:图中共有9个小正方形,其中阴影部分共有5个小正方形,∴从图中随机取一点,这点在阴影部分的概率是,故答案为:.【点睛】本题考查几何概率求解,理解并掌握几何概率是解题关键.2、12【分析】设白色棋子有x个,根据概率公式列方程求解即可.【详解】解:设白色棋子有x个,根据题意得:,解得:x=12,经检验x=12是原方程的根,故答案为:12.【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3、260【分析】先求出一等奖的概率,然后利用频数=总数×概率求解即可.【详解】解:由题意得:一等奖的概率=,∴盒子中有“谢谢惠顾”张,故答案为:260.【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.4、②【分析】根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.【详解】①由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以①中的说法是合理的.②由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以②中的说法不合理;③由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以③中的说法是合理的;故答案为:②【点睛】本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.5、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可.【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为∴用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8.【点睛】本题考查了概率.解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下.三、解答题1、,验证过程见解析【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.【详解】活动1: 红球1红球2白球红球1 (红1,红2)(红1,白)红球2(红2,红1) (红2,白)白球(白,红1)(白,红2) ∵共有6种等可能的结果,摸到两个红球的有2种情况,∴摸出的两个球都是红球的概率记为活动2: 红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,白)白球(白,红1)(白,红2)(白,白)∵共有9种等可能的结果,摸到两个红球的有4种情况,∴摸出的两个球都是红球的概率记为∴【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.2、(1)100;(2)144°,见解析;(3)见解析,【分析】(1)根据器乐的占比和人数进行求解即可;(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.【详解】解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)表示D选项的扇形圆心角的度数是,喜欢B类项目的人数有:100-30-10-40=20(人),补全条形统计图如图1所示:故答案为:144°;(3)画树形图如图2所示:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.3、两次摸出的都是红球的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:根据题意,画树状图如下:共有12种结果,并且每种结果出现的可能性相同,符合题意的结果有2种,所以(两次摸出的都是红球).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数=总数×频率,频率=频数÷总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论.【分析】解:(1)由题意得:,,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下: 红桃123方块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,∴乙方赢甲方赢,∴这个游戏对双方是不公平的,有利于乙方.【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)见详解;(2).【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.【详解】解:(1)由题意列表得: 12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份数学第26章 概率初步综合与测试课时训练,共20页。试卷主要包含了以下事件为随机事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共20页。试卷主要包含了下列事件是随机事件的是,下列说法中正确的是,下列事件中,属于不可能事件的是,下列事件中,属于必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份2021学年第26章 概率初步综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。