终身会员
搜索
    上传资料 赚现金

    2022年强化训练沪科版九年级数学下册第26章概率初步综合训练试题(含解析)

    立即下载
    加入资料篮
    2022年强化训练沪科版九年级数学下册第26章概率初步综合训练试题(含解析)第1页
    2022年强化训练沪科版九年级数学下册第26章概率初步综合训练试题(含解析)第2页
    2022年强化训练沪科版九年级数学下册第26章概率初步综合训练试题(含解析)第3页
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第26章 概率初步综合与测试课后测评

    展开

    这是一份初中数学第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件中,属于必然事件的是,若a是从“,下列说法正确的是,把6张大小等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步综合训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是(  )

    A. B. C. D.

    2、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是(  )

    A.1 B.1 C. D.1

    3、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(   

    A. B. C. D.

    4、下列事件中,属于必然事件的是(   

    A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球

    C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边

    5、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:

    抛掷次数m

    500

    1000

    1500

    2000

    2500

    3000

    4000

    5000

    “正面向上”的次数n

    265

    512

    793

    1034

    1306

    1558

    2083

    2598

    “正面向上”的频率

    0.530

    0.512

    0.529

    0.517

    0.522

    0.519

    0.521

    0.520

    下面有3个推断:

    ①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是(  

    A.② B.①③ C.②③ D.①②③

    6、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是(     

    A.1 B. C. D.

    7、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为(    

    A. B. C. D.

    8、下列说法正确的是(  )

    A.掷一枚质地均匀的骰子,掷得的点数为3的概率是

    B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球

    C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同

    D.在同一年出生的400个同学中至少会有2个同学的生日相同

    9、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是(   

    A. B. C. D.

    10、下列说法中正确的是(   

    A.“打开电视,正在播放《新闻联播》”是必然事件

    B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖

    C.想了解某市城镇居民人均年收入水平,宜采用抽样调查

    D.我区未来三天内肯定下雪

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.

    2、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是________.

    3、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.

    4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.

    5、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).

    三、解答题(5小题,每小题10分,共计50分)

    1、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:

    移植棵数(

    成活数(

    成活率(

    移植棵数(

    成活数(

    成活率(

    50

    47

    0.940

    1500

    1335

    0.890

    270

    235

    0.870

    3500

    3203

    0.915

    400

    369

    0.923

    7000

    6335

    750

    662

    0.883

    14000

    12628

    0.902

    根据以上信息,回答下列问题:

    (1)当移植的棵数是7000时,表格记录成活数是________,那么成活率是________

    (2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________

    (3)若小王移植10000棵这种树苗,则可能成活________;

    (4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由.

    2、2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从ABCD四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.

    (1)“A志愿者被选中”是______ 事件(填“随机”或“不可能”或“必然”);

    (2)用画树状图或列表的方法求出AB两名志愿者同时被选中的概率.

    3、 “垃圾分类”进校园,锦江教育出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按ABCD四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.

    (1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)

    ①必然事件            ②不可能事件            ③随机事件

    (2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.

    A.有害垃圾                B.厨余垃圾

    C.可回收垃圾            D.其他垃圾

    4、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.

    (1)让转盘自由转动一次,指针落在白色区域的概率是多少?

    (2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)

    5、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有ABCD四种玩具中的一种,抽到玩具B的有关统计量如表所示:

    抽盲盒总

    500

    1000

    1500

    2000

    2500

    3000

    频数

    130

    273

    414

    566

    695

    843

    频率

    0.260

    0.273

    0.276

    0.283

    0.278

    0.281

    (1)估计从这批盲盒中任意抽取一个是玩具B的概率是      ;(结果保留小数点后两位)

    (2)小明从分别装有ABCD四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.

    【详解】

    解:随机掷一枚质地均匀的硬币三次,

    根据树状图可知至少有两次正面朝上的事件次数为:4,

    总的情况为8次,

    故至少有两次正面朝上的事件概率是:

    故选:B.

    【点睛】

    本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.

    2、A

    【分析】

    设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.

    【详解】

    解:如图所示,设正方形ABCD的边长为a

    ∵四边形ABCD是正方形,

    ∴∠C=90°,

    ∴石子落在阴影部分的概率是

    故选A.

    【点睛】

    本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.

    3、A

    【分析】

    根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可

    【详解】

    解:∵总可能结果有4种,摸到标号大于2的结果有2种,

    ∴从袋子中任意摸出1个球,摸到标号大于2的概率是

    故选A

    【点睛】

    本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.

    4、D

    【分析】

    根据事件发生的可能性大小判断即可.

    【详解】

    解;A、小明买彩票中奖是随机事件,不符合题意;

    B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;

    C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;

    D、三角形两边之和大于第三边是必然事件,符合题意;

    故选:D

    【点睛】

    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    5、C

    【分析】

    根据概率公式和图表给出的数据对各项进行判断,即可得出答案.

    【详解】

    解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;

    故选:C

    【点睛】

    本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.

    6、B

    【分析】

    根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.

    【详解】

    解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,

    a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,

    关于x的方程为一元二次方程的概率是

    故选择B.

    【点睛】

    本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.

    7、B

    【分析】

    设四张小图片分别用AaBb表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.

    【详解】

    解:设四张小图片分别用AaBb表示,画树状图得:

    由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,

    ∴摸取两张小图片恰好合成一张完整图片的概率为:

    故选:B.

    【点睛】

    题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.

    8、D

    【分析】

    A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.

    【详解】

    解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;

    B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;

    C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;

    D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;

    故选D.

    【点睛】

    本题考察了概率.解题的关键与难点在于了解概率概念与求解.

    9、D

    【分析】

    根据题意,判断出中心对称图形的个数,进而即可求得答案

    【详解】

    解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种

    ∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是

     

    故选D

    【点睛】

    本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.

    10、C

    【分析】

    根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.

    【详解】

    A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;

    B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;

    C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;

    D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;

    故选C

    【点睛】

    本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.

    二、填空题

    1、8

    【分析】

    首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.

    【详解】

    解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,

    ∴摸出红球的概率为0.2,

    由题意,

    解得:

    经检验,是原方程的解,且符合题意,

    故答案为:8.

    【点睛】

    本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.

    2、13

    【分析】

    总数量乘以摸到红球的频率的稳定值即可.

    【详解】

    解:根据题意知,布袋中红球的个数大约是20×0.65=13,

    故答案为:13.

    【点睛】

    本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    3、

    【分析】

    根据概率的计算公式计算.

    【详解】

    ∵一枚质地均匀的正方体骰子有6种等可能性,

    ∴朝上一面的点数是“5”的概率是

    故答案为:

    【点睛】

    本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.

    4、

    【分析】

    根据概率公式计算即可

    【详解】

    共有个球,其中黑色球3个

    从中任意摸出一球,摸出白色球的概率是

    故答案为:

    【点睛】

    本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.

    5、大

    【分析】

    分别求得找到男生和找到女生的概率即可比较出可能性的大小.

    【详解】

    解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,

    ∴找到男生的概率为:

    找到女生的概率为:

    ∴找到男生的可能性大,

    故答案为:大

    【点睛】

    本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.

    三、解答题

    1、

    (1)6335;0.905;

    (2)0.900;

    (3)9000棵;

    (4)此结论不正确,理由见解析

    【分析】

    (1)根据表格中的数据求解即可;

    (2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;

    (3)利用成活数=总数×成活概率即可得到答案;

    (4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案.

    (1)

    解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,

    ∴成活率

    故答案为:6335;0.905;

    (2)

    解:∵大量重复试验下,频率的稳定值即为概率值,

    ∴可以估计树苗成活的概率是0.900,

    故答案为:0.900;

    (3)

    解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,

    故答案为:9000棵;

    (4)

    解:若小王移植20000棵这种树苗,则一定成活18000棵.此结论不正确,理由如下:

    ∵概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,

    ∴若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵.

    【点睛】

    本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    2、 (1)随机;(2)见解析

    【分析】

    (1)根据随机事件、不可能事件及必然事件的概念求解即可;

    (2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.

    【详解】

    (1)根据随机事件的概念,A志愿者被选中是随机事件上,

    故答案为:随机.

    (2)                       

    由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同.其中AB两名志愿者同时被选中的有2种.

    PAB两名志愿者同时被选中)=

    【点睛】

    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    3、

    (1)③

    (2)

    【分析】

    (1)根据随机事件的相关概念可直接进行求解;

    (2)根据列表法可直接进行求解概率.

    (1)

    解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;

    故答案为③;

    (2)

    解:列表如下:

     

    A

    B

    C

    D

    A

    (A,A)

    (A,B)

    (A,C)

    (A,D)

    B

    (B,A)

    (B,B)

    (B,C)

    (B,D)

    C

    (C,A)

    (C,B)

    (C,C)

    (C,D)

    D

    (D,A)

    (D,B)

    (D,C)

    (D,D)

    由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.

    【点睛】

    本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.

    4、(1);(2)见解析,

    【分析】

    (1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;

    (2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.

    【详解】

    解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是

    (2)设白色扇形两块和黑色扇形的一块分别为1,2,3,

    画树状图得:

    由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,

    所以指针一次落在白色区域,另一次落在黑色区域的概率为

    【点睛】

    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    5、

    (1)0.28;

    (2)

    【分析】

    (1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;

    (2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.

    (1)

    解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,

    故答案为0.28.

    (2)

    列表为:

     

    A

    B

    C

    D

    A

    --

    BA

    CA

    DA

    B

    AB

    --

    CB

    DB

    C

    AC

    BC

    --

    DC

    D

    AD

    BD

    CD

    --

    由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=

    【点睛】

    本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.

     

    相关试卷

    初中沪科版第26章 概率初步综合与测试同步测试题:

    这是一份初中沪科版第26章 概率初步综合与测试同步测试题,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    初中数学第26章 概率初步综合与测试巩固练习:

    这是一份初中数学第26章 概率初步综合与测试巩固练习,共19页。试卷主要包含了下列事件为随机事件的是,下列说法正确的是,下列说法中正确的是等内容,欢迎下载使用。

    九年级下册第26章 概率初步综合与测试同步达标检测题:

    这是一份九年级下册第26章 概率初步综合与测试同步达标检测题,共20页。试卷主要包含了下列事件中,属于随机事件的是,下列事件中,是必然事件的是,下列事件是必然事件的是,下列判断正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map