终身会员
搜索
    上传资料 赚现金

    2022年最新精品解析沪科版九年级数学下册第26章概率初步章节测评试题(含详细解析)

    立即下载
    加入资料篮
    2022年最新精品解析沪科版九年级数学下册第26章概率初步章节测评试题(含详细解析)第1页
    2022年最新精品解析沪科版九年级数学下册第26章概率初步章节测评试题(含详细解析)第2页
    2022年最新精品解析沪科版九年级数学下册第26章概率初步章节测评试题(含详细解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习

    展开

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列事件是必然事件的是,下列事件中,是必然事件的是,把6张大小,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步章节测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为(   

    A.12 B.15 C.18 D.23

    2、下列事件中,属于随机事件的是(   

    A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形

    B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形

    C.如果一个三角形有两个角相等,那么两个角所对的边也相等

    D.有两组对应边和一组对应角分别相等的两个三角形全等

    3、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是(   

    A.无放回的从中连续摸出三个红球是随机事件

    B.从中摸出一个棕色球是随机事件

    C.无放回的从中连续摸出两个白球是不可能事件

    D.从中摸出一个红色球是必然事件

    4、下列事件是必然事件的是(   

    A.明天会下雨

    B.抛一枚硬币,正面朝上

    C.通常加热到100℃,水沸腾

    D.经过城市中某一有交通信号灯的路口,恰好遇到红灯

    5、下列事件中,是必然事件的是(   

    A.同位角相等

    B.打开电视,正在播出特别节目《战疫情》

    C.经过红绿灯路口,遇到绿灯

    D.长度为4,6,9的三条线段可以围成一个三角形.

    6、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是(   

    A. B. C. D.

    7、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:

    摸球次数

    10

    40

    80

    200

    500

    800

    摸到红球次数

    3

    16

    20

    40

    100

    160

    摸到红球的频率

    0.3

    0.4

    0.25

    0.2

    0.2

    0.2

    则袋中的红球个数可能有(  )

    A.16个 B.8个 C.4个 D.2个

    8、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(   

    A. B. C. D.

    9、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是(   

    A.①②③ B.①③② C.③②① D.③①②

    10、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是(  )

    A.掷一枚正六面体的骰子,出现1点的概率

    B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率

    C.抛一枚硬币,出现正面的概率

    D.任意写一个整数,它能被2整除的概率

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.

    2、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是______.

    3、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是________.

    4、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.

    5、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为_____.

    三、解答题(5小题,每小题10分,共计50分)

    1、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者.

    (1)抽取2名,求恰好都是女生的概率;

    (2)抽取3名,恰好都是女生的概率是      

    2、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)

    ①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用表示);

    ②1个宣传类岗位:垃圾分类知识宣传(用表示).

    (1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.

    (2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.

    3、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有AB两个选项,第9题和第10题都有ABC三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)

    (1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;

    (2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大

    4、现有AB两个不透明的袋子,A袋中的两个小球分别标记数字1,2;B袋中的三个小球分别标记数字3,4,5.这五个小球除标记的数字外,其余完全相同.分别将AB两个袋子中的小球摇匀,然后小明从AB袋中各随机摸出一个小球,请利用画树状图或列表的方法,求小明摸出的这两个小球标记的数字之和为5的概率.

    5、疫情期间,渤海中学进行了一次线上数学学情调查,九年级(1)班数学李老师对成绩进行分析,绘制成尚不完整的统计图表,如图.

    (1)          类所在扇形的圆心角的度数是          ,并补全频数分布直方图;

    (2)全校九年级共有720名学生全部参加此次测试,估计该校成绩在范围内的学生人数;

    (3)九年级(1)班数学李老师准备从类优生的6人中随机抽取2人进行线上学习经验交流,已知这6人中有2名是无家长管理的留守学生,求恰好只选中其中1名留守学生进行经验交流的概率.

    类别

    分数段

    频数(人数)

    A

    B

    16

    C

    24

    D

    6

     

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.

    【详解】

    解:设盒子中红球的个数x,根据题意,得:

    解得x=12,

    所以盒子中红球的个数是12,

    故选:A.

    【点睛】

    本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p

    2、D

    【分析】

    根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.

    【详解】

    A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;

    B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;

    C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;

    D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.

    故选:D.

    【点睛】

    本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.

    3、A

    【分析】

    随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.

    【详解】

    无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;

    一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;

    无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;

    一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.

    故选A.

    【点睛】

    本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.

    4、C

    【分析】

    根据必然事件就是一定发生的事件逐项判断即可.

    【详解】

    A.明天会下雨,属于随机事件,故该选项不符合题意;

    B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;

    C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;

    D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.

    5、D

    【分析】

    根据必然事件的概念即可得出答案.

    【详解】

    解:∵同位角不一定相等,为随机事件,

    ∴A选项不合题意,

    ∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,

    ∴B选项不合题意,

    ∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,

    ∴C选项不合题意,

    ∵4+6>9,

    ∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.

    ∴D选项符合题意,

    故选:D.

    【点睛】

    本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.

    6、D

    【分析】

    根据题意,判断出中心对称图形的个数,进而即可求得答案

    【详解】

    解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种

    ∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是

     

    故选D

    【点睛】

    本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.

    7、C

    【分析】

    首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.

    【详解】

    解:∵摸球800次红球出现了160次,

    ∴摸到红球的概率约为

    ∴20个球中有白球20×=4个,

    故选:C.

    【点睛】

    本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.

    8、A

    【分析】

    根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可

    【详解】

    解:∵总可能结果有4种,摸到标号大于2的结果有2种,

    ∴从袋子中任意摸出1个球,摸到标号大于2的概率是

    故选A

    【点睛】

    本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.

    9、D

    【分析】

    必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.

    【详解】

    解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;

    ②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;

    ③中面朝上的点数大于是一定会发生的,故为必然事件.

    依据要求进行排序为③①②

    故选D.

    【点睛】

    本题考察了事件.解题的关键在于区分各种事件的概念.

    10、B

    【分析】

    根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.

    【详解】

    解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;

    B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;

    C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;

    D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.

    故选:B

    【点睛】

    此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.

    二、填空题

    1、##

    【分析】

    用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.

    【详解】

    解:根据题意,可能出现的情况有:

    红球;红球;红球;黑球;黑球;

    则恰好是红球的概率是

    故答案为:

    【点睛】

    本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.

    2、

    【分析】

    根据列表法求概率即可.

    【详解】

    解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,

     

    A

    B

    C

    A

    AA

    AB

    AC

    B

    BA

    BB

    BC

    C

    CA

    CB

    CC

    共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则

    小东和小华都抽到游泳项目的概率为

    故答案为:

    【点睛】

    本题考查了列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.

    3、

    【分析】

    从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得.

    【详解】

    解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,

    则如果从中随机摸出一个,那么摸到黄球的可能性大小是

    故答案为:

    【点睛】

    本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.

    4、12

    【分析】

    根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.

    【详解】

    解:由题意知摸到黄色球的频率稳定在40%,

    所以摸到白色球的概率:1-40%=60%,

    因为不透明的布袋中,有黄色、白色的玻璃球共有20个,

    所以布袋中白色球的个数为20×60%=12(个),

    故答案为:12.

    【点睛】

    本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.

    5、

    【分析】

    根据简单概率的概率公式进行计算即可,概率=所求情况数与总情况数之比.

    【详解】

    解:共有5中等可能结果,其中大于2的有3种,则从中随机摸出一个小球,其标号大于2的概率为

    故答案为:

    【点睛】

    本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.

    三、解答题

    1、(1);(2)

    【分析】

    (1)利用列表法进行求解即可;

    (2)利用树状图的方法列出所有可能的情况,再求解即可.

    【详解】

    解:(1)列表如下:

     

    1

    2

    3

     

    (女1,男)

    (女2,男)

    (女3,男)

    1

    (男,女1

     

    (女2,女1

    (女3,女1

    2

    (男,女2

    (女1,女2

     

    (女3,女2

    3

    (男,女3

    (女1,女3

    (女2,女3

     

    由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,

    ∴抽取2名,恰好都是女生的概率

    (2)列树状图如下:

    由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,

    ∴抽取3名,恰好都是女生的概率

    故答案为:

    【点睛】

    本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键.

    2、(1);(2)

    【分析】

    (1)利用概率公式,即可求解;

    (2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解

    【详解】

    解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为

    (2)根据题意画图如下:

    共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是

    【点睛】

    本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率PA)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.

    3、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.

    【分析】

    (1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;

    (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.

    【详解】

    (1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,

    共有6种等可能的结果数,其中三题全答对的结果数为1

    所以小明顺利通关的概率=

    故通关的概率为

    (2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:

    共有6种等可能的结果数,其中三题全答对的结果数为1,

    所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=

    若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C

    共有8种等可能的结果数,其中三题全答对的结果数为1

    所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=

    故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.

    【点睛】

    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率.

    4、

    【分析】

    作列表,共有6种可能的结果,摸出的这两个小球标记的数字之和为5的结果有2种,再由概率公式求解即可.

    【详解】

    解:列表如下:

    1

    2

    3

    (1,3)

    (2,3)

    4

    (1,4)

    (2,4)

    5

    (1,5)

    (2,5)

    共有6种等可能结果,其中小明摸出的两个小球标记的数字之和为5有2种,

    P(摸出的两个小球标记的数字之和为5)=

    【点睛】

    本题考查了树状图法或列表求概率,正确画出树状图或列表是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.

    5、(1)2,,图见解析;(2)450人;(3)

    【分析】

    (1)先根据类的信息可求出调查的总人数,由此即可得出的值,再求出类所占百分比,然后乘以可得圆心角的度数,最后根据类的人数补全频数分布直方图即可;

    (2)利用720乘以成绩在范围内的学生所占百分比即可得;

    (3)先画出树状图,从而可得随机抽取2人进行线上学习经验交流的所有可能的结果,再找出恰好只选中其中1名留守学生进行经验交流的结果,然后利用概率公式即可得.

    【详解】

    解:(1)调查的总人数为(人),

    类所在扇形的圆心角的度数是

    故答案为:2,

    补全频数分布直方图如图所示:

    (2)(人),

    答:估计该校成绩在范围内的学生人数为450人;

    (3)把类优生的6人分别记为1,2,3,4,5,6,其中1,2为留守学生,画树状图如下:

    由图可知,共有30种等可能的结果,恰好只选中其中1名留守学生进行经验交流的结果有16种,

    则所求的概率为

    答:恰好只选中其中1名留守学生进行经验交流的概率为

    【点睛】

    本题考查了频数分布直方图、利用列举法求概率等知识点,熟练掌握统计调查的相关知识和列举法是解题关键.

     

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试达标测试:

    这是一份沪科版九年级下册第26章 概率初步综合与测试达标测试,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试课堂检测:

    这是一份沪科版九年级下册第26章 概率初步综合与测试课堂检测,共20页。试卷主要包含了下列说法正确的是,在一个不透明的布袋中,红色,下列事件是必然事件的是等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试课后测评:

    这是一份数学九年级下册第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件中是不可能事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map