终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪科版九年级数学下册第26章概率初步定向练习试卷(含答案详解)

    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第26章概率初步定向练习试卷(含答案详解)第1页
    2022年最新强化训练沪科版九年级数学下册第26章概率初步定向练习试卷(含答案详解)第2页
    2022年最新强化训练沪科版九年级数学下册第26章概率初步定向练习试卷(含答案详解)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第26章 概率初步综合与测试当堂达标检测题

    展开

    这是一份数学九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了下列事件中,属于必然事件的是,下列说法正确的是等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是(    A. B. C. D.2、下列事件中,属于不可能事件的是(    A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯3、下列事件中是必然事件的是(    A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上4、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有(  )A.16个 B.8个 C.4个 D.2个5、下列事件中,属于必然事件的是(    A.任意购买一张电影票,座位号是奇数B.抛一枚硬币,正面朝上C.五个人分成四组,这四组中有一组必有2人D.打开电视,正在播放动画片6、下列说法正确的是(  )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同7、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是(  )移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B.可以用试验次数累计最多时的频率作为概率的估计值C.由此估计这种幼苗在此条件下成活的概率约为0.9D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株8、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).A.      B.             C.    D.19、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是(    A.的值一定是B.的值一定不是C.m越大,的值越接近D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性10、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是(    A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.2、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.3、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是________.4、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______5、某校准备从AB两名女生和CD两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _______.三、解答题(5小题,每小题10分,共计50分)1、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.(1)这次调查的总人数是           人;(2)扇形统计图中,B类扇形的圆心角是           °;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.2、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.3、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:年级七年级八年级平均分88.1  8b中位数a8  1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中ab的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.4、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率.5、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率. -参考答案-一、单选题1、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是 故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.2、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意; C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.3、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.【详解】解:∵摸球800次红球出现了160次,∴摸到红球的概率约为∴20个球中有白球20×=4个,故选:C.【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.5、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意购买一张电影票,座位号是奇数是随机事件;B、抛一枚硬币,正面朝上是随机事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、打开电视,正在播放动画片是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.7、D【分析】根据频率估计概率逐项判断即可得.【详解】解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D.【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.8、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=9、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.10、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.二、填空题1、【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:∵共摸球4000次,其中800次摸到黑球,∴从中随机摸出一个球是黑球的概率为故答案为:【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为,白球为,列表得:     ∵一共有12种情况,摸到两个都是红球有2种,∴P(两个球都是红球)故答案是【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.3、【分析】先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可.【详解】解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,∴抽到个位数字是3的概率是故答案为:【点睛】本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键.4、0.9【分析】根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.【详解】解:由题意可得:长方形的面积为∵骰子落在会徽图案上的频率稳定在0.15左右,∴会徽图案的面积为:故答案为:【点睛】题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.5、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:         所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.三、解答题1、(1)40;(2)108;(3)【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360°乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.【详解】解:(1)参加这次调查的学生总人数为6÷15%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,∴所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.2、【分析】ABCD分别表示化学、生物、地理、政治,然后画出树状图求解.【详解】解:用ABCD分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即3、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有(人)(3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,      根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.4、(1)随机;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,第一次抽取卡片抽中小会的概率是(2)解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,所以小月被选中的概率=【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)见详解;(2).【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.【详解】解:(1)由题意列表得: 12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 

    相关试卷

    2020-2021学年第26章 概率初步综合与测试课后测评:

    这是一份2020-2021学年第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了下列事件是必然事件的是,下列事件中是不可能事件的是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试同步达标检测题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共17页。试卷主要包含了下列事件中,是必然事件的是,下列说法中正确的是,在一个不透明的布袋中,红色,下列事件中,属于不可能事件的是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试巩固练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试巩固练习,共18页。试卷主要包含了下列事件中,属于随机事件的是,下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map