![2022年最新精品解析沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12690609/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12690609/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12690609/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题,共19页。试卷主要包含了把6张大小,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下事件为随机事件的是( )A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是2、下列词语所描述的事件,属于必然事件的是( )A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼3、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )A. B. C. D.4、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )A. B. C. D.5、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A. B. C. D.6、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件7、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )A. B. C. D.8、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )A.② B.①③ C.②③ D.①②③9、下列说法正确的是( )A.同时投掷两枚相同的硬币,出现“一正一反”的概率是B.事件“两个正数相加,和是正数”是必然事件C.数2和8的比例中项是4D.同一张底片洗出来的两张照片是位似图形10、下列事件是随机事件的是( )A.抛出的篮球会下落B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是D.400人中有两人的生日在同一天第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、佳禾同学2021年10月的某一天去电影院看电影《长津湖》,“买了一张电影票座位号是偶数”属于 _____(填“必然事件”、“随机事件”或“不可能事件”).2、任意翻一下2021年日历,翻出1月6日的概率为__________;翻出4月31日的概率为__________.3、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.4、农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子;②当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98.其中不合理的是 _____.(只填序号)5、时隔十三年,奥运圣火再次在北京点燃.北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”.墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是________.三、解答题(5小题,每小题10分,共计50分)1、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.2、有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数,2;乙口袋中装有三个相同的球,它们分别写有数,,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为;再从乙口袋中随机取出一个球,其上的数记为.若,小明胜;若,为平局;若,小刚胜.(1)若,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数的值.3、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.4、在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张.(1)求第二次取出的数字小于第一次取出的数字的概率.(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率.5、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大 -参考答案-一、单选题1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是是必然事件;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.守株待兔是随机事件,故该选项不符合题意;B.水中捞月是不可能事件,故该选项不符合题意;C.水滴石穿是必然事件,故该选项符合题意;D.缘木求鱼是不可能事件,故该选项不符合题意.故选:C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.3、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是.故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.5、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是 故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.6、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.7、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.8、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.9、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是±4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B.【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.10、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.二、填空题1、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键.2、 0 【分析】根据概率的公式,即可求解.【详解】解:∵2021年共有365天,∴翻出1月6日的概率为 ,∵2021年4月没有31日,∴翻出4月31日的概率为0.故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键.3、##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.4、②【分析】根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.【详解】①由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以①中的说法是合理的.②由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以②中的说法不合理;③由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以③中的说法是合理的;故答案为:②【点睛】本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.5、【分析】先画树状图得到所有的等可能性的结果数,然后找到两人同坐2号车的结果数,再依据概率公式求解即可.【详解】解:列树状图如下:由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种,∴两人同坐2号车的概率,故答案为:.【点睛】本题主要考查了树状图法或列表法求解概率,熟知树状图或列表法求解概率是解题的关键.三、解答题1、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.【详解】解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,∴甲、乙两同学选取同一部电影的概率为.【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.2、(1)见详解;(2)m=-1【分析】(1)先画出树状图,再利用概率公式计算,即可求解;(2)取一个符合条件的m的值,即可.【详解】解:(1)画树状图如下:∵一共有6种可能的结果,,有2种可能,,有3种可能,∴小明获胜的概率=2÷6=,小刚获胜的概率=3÷6=;(2)当m=-1时,画树状图如下:此时,小明和小刚获胜的概率相同.【点睛】本题主要考查等可能时间的概率,掌握画树状图是解题的关键.3、(1)袋中黄球的个数为1个;(2)【分析】(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;【详解】解:(1)设袋中黄球的个数为x个,根据题意得,解得x=1,经检验,x=1是方程的根,所以袋中黄球的个数为1个;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,所以两次摸出的都是红球的概率.【点睛】本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.4、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:∵共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,∴第二次取出的数字小于第一次取出的数字的概率是;(2)设计:在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?∵共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,∴两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比.5、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【分析】(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.【详解】(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,共有6种等可能的结果数,其中三题全答对的结果数为1所以小明顺利通关的概率=故通关的概率为(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:或共有6种等可能的结果数,其中三题全答对的结果数为1,所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)共有8种等可能的结果数,其中三题全答对的结果数为1所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列事件是必然事件的是,下列事件中,是必然事件的是,把6张大小,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试练习题,共18页。试卷主要包含了下列事件是必然事件的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
这是一份数学九年级下册第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件中是不可能事件的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)