


初中数学沪科版九年级下册第26章 概率初步综合与测试同步练习题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步练习题,共18页。试卷主要包含了任意掷一枚骰子,下列事件中,下列事件中,是必然事件的是,下列事件是必然事件的是,不透明的布袋内装有形状等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件,你认为是必然事件的是( )
A.打开电视机,正在播广告
B.今天星期二,明天星期三
C.今年的正月初一,天气一定是晴天
D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的
2、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
3、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
4、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
5、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )
A.①②③ B.①③② C.③②① D.③①②
6、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
7、下列事件是必然事件的是( )
A.明天会下雨
B.抛一枚硬币,正面朝上
C.通常加热到100℃,水沸腾
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
8、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )
A. B. C. D.
9、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?
下面分别是甲、乙两名同学的答案:
游戏次数 | 100 | 200 | 400 | 1000 |
频率 | 0.32 | 0.34 | 0.325 | 0.332 |
甲:掷一枚质地均匀的骰子,向上的点数与4相差1;
乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”( )
A.甲正确,乙错误 B.甲错误,乙正确
C.甲、乙均正确 D.甲、乙均错误
10、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
2、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.
3、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.
4、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.
5、如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为,自由转动转盘,指针落在白色区域的概率是_________.
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙、丙、丁4人聚会,每人带了一件礼物,4件礼物外盒包装完全相同,将4件礼物放在一起.甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙两人抽到的都不是自己带来的礼物的概率.
2、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3个座位上.
(1)甲坐在①号座位的概率是 ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
3、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①黑色方块所构拼图是中心对称图形的概率是 .
②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
4、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,上面的数字不小于2的概率为 .
(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.
5、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?
-参考答案-
一、单选题
1、B
【分析】
必然事件就是一定发生的事件,依据定义即可作出判断.
【详解】
解:A、是随机事件,故此选项不符合题意;
B、是必然事件,故此选项符合题意;
C、是随机事件,故此选项不符合题意;
D、是随机事件,故此选项不符合题意;.
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
3、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
4、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
5、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
6、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
7、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.明天会下雨,属于随机事件,故该选项不符合题意;
B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;
C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
8、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
9、C
【分析】
由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.
【详解】
由表可知该种结果出现的概率约为
∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6
∴向上的点数与4相差1有3、5
∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为
∴甲的答案正确
又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为
∴乙的答案正确
综上所述甲、乙答案均正确.
故选C.
【点睛】
本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.
10、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
二、填空题
1、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
2、4
【分析】
设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.
【详解】
设黄球的个数为x,
∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,
∴,
解得:,
∴布袋中红色球的个数很可能是(个).
故答案为:4.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.
3、
【分析】
从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.
【详解】
从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1绿1,红1绿2,红2红3,
红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况:
红1绿1,红1绿2,红2绿1.
故所求的概率为P=;
故答案为:.
【点睛】
本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.
4、21
【分析】
根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.
【详解】
解:∵小明通过多次试验发现,摸出白球的频率稳定在0.3左右,
∴白球的个数=30×0.3=9个,
∴红球的个数=30-9=21个,
故答案为:21.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
5、
【分析】
先确定白色部分的面积是整个圆的面积的,结合几何概率的含义可得答案.
【详解】
解:由题意得:白色部分的圆心角为:
所以:
所以自由转动转盘,指针落在白色区域的概率是,
故答案为:
【点睛】
本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.
三、解答题
1、
【分析】
画出树状图,然后根据概率公式列式进行计算即可得解.
【详解】
解:设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,
根据题意画出树状图如图:
一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,
∴甲、乙两人抽到的都不是自己带来的礼物的概率为.
【点睛】
本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
2、
(1)
(2)
【分析】
(1)根据概率公式直角计算即可;
(2)画树状图可知共有6种等可能的结果,而甲与乙相邻而坐的结果有4种,最后用概率公式求解即可.
(1)
解:∵丙坐了一张座位,
∴甲坐在①号座位的概率是.
故答案是.
(2)
解:根据题意画树状图如图:
共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,
∴甲与乙相邻而坐的概率为=.
【点睛】
本题主要考查了概率公式以及运用树状图法求概率,正确画出树状图是解答本题的关键.
3、(1);(2)①;②.
【分析】
(1)直接由概率公式求解即可;
(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;
②画树状图,再由概率公式求解即可.
【详解】
解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形
所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;
(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,
所以黑色方块所构拼图是中心对称图形的概率是;
②画树状图如图:
由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,
∴黑色方块所构拼图是轴对称图形的概率=.
【点睛】
本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.
4、(1);(2)
【分析】
(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;
(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.
【详解】
解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,
其中数字不小于2的情况有:2,3,4,共3种,
则P(小球上写的数字不小于2)=;
故答案为:;
(2)根据题意列表得:
| 1 | 2 | 3 | 4 |
1 | ﹣﹣﹣ | (1,2) | (1,3) | (1,4) |
2 | (2,1) | ﹣﹣﹣ | (2,3) | (2,4) |
3 | (3,1) | (3,2) | ﹣﹣﹣ | (3,4) |
4 | (4,1) | (4,2) | (4,3) | ﹣﹣﹣ |
所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,
则P(两次摸出小球上的数字和恰好是奇数)==.
故答案为:
【点睛】
本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.
5、小宇获胜的概率是,见解析.
【分析】
根据题意画树状图表示出所有等可能的情况,继而解题.
【详解】
解:画树状图如下,
所有机会均等的情况共9种,小宇获胜的概率为:,
答:小宇获胜的概率是.
【点睛】
本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试当堂检测题,共19页。试卷主要包含了下列事件中,属于随机事件的是,下列四幅图的质地大小,下列说法正确的是等内容,欢迎下载使用。
这是一份数学九年级下册第26章 概率初步综合与测试达标测试,共20页。试卷主要包含了下列四幅图的质地大小等内容,欢迎下载使用。