终身会员
搜索
    上传资料 赚现金

    精品试题沪科版九年级数学下册第26章概率初步章节练习试题(名师精选)

    立即下载
    加入资料篮
    精品试题沪科版九年级数学下册第26章概率初步章节练习试题(名师精选)第1页
    精品试题沪科版九年级数学下册第26章概率初步章节练习试题(名师精选)第2页
    精品试题沪科版九年级数学下册第26章概率初步章节练习试题(名师精选)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第26章 概率初步综合与测试练习题

    展开

    这是一份初中数学第26章 概率初步综合与测试练习题,共22页。试卷主要包含了一个不透明的口袋里有红,在一个不透明的布袋中,红色,下列事件中,是必然事件的是,在一个不透明的盒子中装有红球等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步章节练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是(   

    A. B. C. D.

    2、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是(   

    A. B. C. D.

    3、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是(   

    A. B. C. D.

    4、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为(  )

    A. B. C. D.

    5、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是(   

    A. B. C. D.

    6、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是(   

    A.24 B.18 C.16 D.6

    7、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:

    摸球的次数

    200

    300

    400

    1000

    1600

    2000

    摸到黑球的频数

    142

    186

    260

    668

    1064

    1333

    摸到黑球的频率

    0.7100

    0.6200

    0.6500

    0.6680

    0.6650

    0.6665

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有(  )个.

    A.4 B.3 C.2 D.1

    8、下列事件中,是必然事件的是(   

    A.同位角相等

    B.打开电视,正在播出特别节目《战疫情》

    C.经过红绿灯路口,遇到绿灯

    D.长度为4,6,9的三条线段可以围成一个三角形.

    9、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为(   

    A.12 B.15 C.18 D.23

    10、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法(   

    A.有道理,池中大概有1200尾鱼 B.无道理

    C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.

    2、现有5张除数字外完全相同的卡片,上面分别写有,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为

    (1)用列表法或画树状图法列举的所有可能结果.

    (2)若将mn的值代入二次函数,求二次函数顶点在坐标轴上的概率.

    3、有两个正方体的积木块,如图所示.

    下面是小怡投掷某块积木200次的情况统计表:

    灰色的面朝上

    白色的面朝上

    32次

    168次

    根据表中的数据推测,小怡最有可能投掷的是______号积木.

    4、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.

    5、在如图所示的电路图中,当随机闭合开关K1K2K3中的两个时,能够让灯泡发光的概率为________.

    三、解答题(5小题,每小题10分,共计50分)

    1、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成ABCD四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:

    (1)接受问卷调查的学生共有        人;

    (2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;

    (3)全校约有学生1500人,估计“A”等级的学生约有多少人?

    (4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率.

    2、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).

    甲种品牌化妆品

    两红

    一红一白

    两白

    礼金券(元)

    6

    12

    6

    乙种品牌化妆品

    两红

    一红一白

    两白

    礼金券(元)

    12

    6

    12

    (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;

    (2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.

    3、电影《长津湖》以抗美援朝战争第二次战役中的长津湖战役为背景,讲述71年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌的真实历史.为纪念历史,缅怀先烈,我校团委将电影中的四位历史英雄人物头像制成编号为ABCD的四张卡片(除编号和头像外其余完全相同),活动时学生根据所抽取的卡片来讲述他们在影片中波澜壮阔、可歌可泣的历史事迹.规则如下:先将四张卡片背面朝上,洗匀放好,小强从中随机抽取一张,然后放回并洗匀,小叶再从中随机抽取一张.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.

    4、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了如下的条形统计图和扇形统计图.请根据图中信息,回答下列问题:

     

    (1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;

    (2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;

    (3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率.

    5、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有AB两个选项,第9题和第10题都有ABC三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)

    (1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;

    (2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    用3的倍数的个数除以数的总数即为所求的概率.

    【详解】

    解:∵1到10的数字中是3的倍数的有3,6,9共3个,

    ∴卡片上的数字是3的倍数的概率是

    故选:C.

    【点睛】

    本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.

    2、D

    【分析】

    根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA,进行计算即可.

    【详解】

    解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,

    ∴抽到每个球的可能性相同,

    ∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是

    P(白球)

    故选:D.

    【点睛】

    本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.

    3、A

    【分析】

    如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.

    【详解】

    解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,

    骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,

    所以骰子落地时朝上的数为偶数的概率是 

    故选A

    【点睛】

    本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.

    4、D

    【分析】

    在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.

    【详解】

    解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,

    红球有:个,

    则随机摸出一个红球的概率是:

    故选:D.

    【点睛】

    本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.

    5、A

    【分析】

    根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可

    【详解】

    解:∵总可能结果有4种,摸到标号大于2的结果有2种,

    ∴从袋子中任意摸出1个球,摸到标号大于2的概率是

    故选A

    【点睛】

    本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.

    6、A

    【分析】

    根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.

    【详解】

    解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,

    ∴摸到白球的频率为1-0.15-0.45=0.40,

    ∴口袋中白色球的个数可能是60×0.40=24个.

    故选A.

    【点睛】

    本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.

    7、C

    【分析】

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.

    【详解】

    解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,

    估计摸出黑球的概率为0.667,

    则摸出绿球的概率为

    袋子中球的总个数为

    由此估出黑球个数为

    故选:C.

    【点睛】

    本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    8、D

    【分析】

    根据必然事件的概念即可得出答案.

    【详解】

    解:∵同位角不一定相等,为随机事件,

    ∴A选项不合题意,

    ∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,

    ∴B选项不合题意,

    ∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,

    ∴C选项不合题意,

    ∵4+6>9,

    ∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.

    ∴D选项符合题意,

    故选:D.

    【点睛】

    本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.

    9、A

    【分析】

    由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.

    【详解】

    解:设盒子中红球的个数x,根据题意,得:

    解得x=12,

    所以盒子中红球的个数是12,

    故选:A.

    【点睛】

    本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p

    10、A

    【分析】

    设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.

    【详解】

    解:设池中大概有鱼x尾,由题意得:

    解得:

    经检验:是原方程的解;

    ∴池塘主的做法有道理,池中大概有1200尾鱼;

    故选A.

    【点睛】

    本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.

    二、填空题

    1、##

    【分析】

    用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.

    【详解】

    解:根据题意,可能出现的情况有:

    红球;红球;红球;黑球;黑球;

    则恰好是红球的概率是

    故答案为:

    【点睛】

    本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.

    2、(1)见解析;(2)

    【分析】

    (1)画出树状图即可;

    (2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可.

    【详解】

    (1)画树状图得

    共有20种可能的结果;

    (2)从,0,1,2这五个数中任取两数mn,共有20种可能,

    其中二次函数顶点在坐标轴上(记为事件A)的有8种,

    所以

    【点睛】

    本题考查了用树状图法求概率以及二次函数的性质.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.

    3、②

    【分析】

    计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.

    【详解】

    ①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是

    ②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为

    由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为

    故选择的是②号积木,

    理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.

    故答案为②

    【点睛】

    本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.

    4、

    【分析】

    画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解

    【详解】

    解:根据题意画出树状图,得:

    共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,

    所以摸出1根红色缎带1根黄色缎带的概率=

    【点睛】

    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.

    5、

    【分析】

    根据题意画出树状图,由树状图求得所有可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.

    【详解】

    解:设K1K2K3中分别用1、2、3表示,

    画树状图得:

    ∵共有6种等可能的结果,能够让灯泡发光的有4种结果,

    ∴能够让灯泡发光的概率为:

    故答案为:

    【点睛】

    本题主要考查了概率问题,根据题意画出树状图求得所有可能的结果与能够让灯泡发光的情况是关键.

    三、解答题

    1、(1)40;(2)72°,见解析;(3)225人;(4)

    【分析】

    (1)C组:了解很少这个小组有人,占比可得答案;

    (2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;

    (3)由乘以A组的占比即可得到答案;

    (4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.

    【详解】

    解:(1) C组:了解很少这个小组有人,占比

    接受问卷调查的学生共有人,

    故答案为:

    (2)组占比:

    扇形统计图中“D”等级的扇形的圆心角的度数为:

    组人数为:

    所以补全条形统计图如下:

    (3)全校约有学生1500人,估计“A”等级的学生约有:

    (人);

    (4)列表如下:

     

     

    (甲,乙)

    (甲,丙)

    (甲,丁)

    (乙,甲)

     

    (乙,丙)

    (乙,丁)

    (丙,甲)

    (丙,乙)

     

    (丙,丁)

    (丁,甲)

    (丁,乙)

    (丁,丙)

     

    所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,

    所以刚好抽到甲和丁同学的概率是:

    【点睛】

    本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.

    2、

    (1)摇出一红一白的概率=

    (2)选择甲品牌化妆品,理由见解析

    【分析】

    (1)让所求的情况数除以总情况数即为所求的概率;

    (2)算出相应的平均收益,比较即可.

    (1)

    解:树状图为:

    ∴一共有6种情况,摇出一红一白的情况共有4种,

    摇出一红一白的概率=

    (2)

    (2)∵两红的概率P=,两白的概率P=,一红一白的概率P=

    ∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.

    乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.

    ∴选择甲品牌化妆品.

    【点睛】

    本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    3、

    【分析】

    根据题意列出树状图,根据概率公式即可求解.

    【详解】

    由题意做树状图如下:

    故小强和小叶抽到的两张卡片恰好是同一英雄人物的概率为

    【点睛】

    此题考查了用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.

    4、

    (1)50,,图见解析

    (2)36

    (3)

    【分析】

    (1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形统计图,再求出D选项所占的百分数即可求得D选项所对应的圆心角;

    (2)根据家长总人数乘以D选项所占的百分数即可求解;

    (3)根据(1)中求出的D选项人数可求得男女家长数,再用列表法求解即可.

    (1)

    解:家长总人数:11÷22%=50(人),

    B选项人数:50×40%=20(人),

    D选项人数:50-11-20-15=4(人),

    D选项所占的百分数为4÷50=8%,

    D选项所对的圆心角为360°×8%=28.8°,

    答:一共调查了50名家长,选项圆心角为,补全条形统计图如图:

    (2)

    解:450×8%=36(人),

    答:估计九年级“不知晓五项管理”举措的家长有36人;

    (3)

    解:D选项共4人,则男女家长各2人,从中抽取2人,画树状图为:

    由图可知,一共有12种等可能的结果,其中都是男家长的有2种,

    ∴抽取家长都是男家长的概率是

    【点睛】

    本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、用列表或画树状图法求概率,能从条形统计图和扇形统计图中获取有效信息是解答的关键.

    5、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.

    【分析】

    (1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;

    (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.

    【详解】

    (1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,

    共有6种等可能的结果数,其中三题全答对的结果数为1

    所以小明顺利通关的概率=

    故通关的概率为

    (2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:

    共有6种等可能的结果数,其中三题全答对的结果数为1,

    所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=

    若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C

    共有8种等可能的结果数,其中三题全答对的结果数为1

    所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=

    故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.

    【点睛】

    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率.

     

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试巩固练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了在一个不透明的布袋中,红色,下列说法正确的有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共20页。试卷主要包含了一个不透明的口袋里有红,不透明的布袋内装有形状等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试当堂检测题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试当堂检测题,共19页。试卷主要包含了下列事件中,属于随机事件的是,下列四幅图的质地大小,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map