初中数学沪科版九年级下册第24章 圆综合与测试同步练习题
展开沪科版九年级数学下册第24章圆专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,A,B,C是正方形网格中的三个格点,则是( )
A.优弧 B.劣弧 C.半圆 D.无法判断
2、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
3、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6 B. C.3 D.
4、如图,是△ABC的外接圆,已知,则的大小为( )
A.55° B.60° C.65° D.75°
5、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )
A.平移 B.翻折 C.旋转 D.以上三种都不对
8、如图,是的直径,、是上的两点,若,则( )
A.15° B.20° C.25° D.30°
9、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )
A.3 B. C. D.
10、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
2、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.
3、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
4、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
5、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
三、解答题(5小题,每小题10分,共计50分)
1、如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F.点E落在BA上,连接AF.
(1)若∠BAC=40°,求∠BAF的度数;
(2)若AC=8,BC=6,求AF的长.
2、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
3、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
4、如图,为的直径,为的切线,弦,直线交的延长线于点,连接.
求证:(1);
(2).
5、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).
(1)设∠DAD1=30°,n=2,求证:OD1的长度;
(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.
-参考答案-
一、单选题
1、B
【分析】
根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
【详解】
解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.
故选:B.
【点睛】
本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
2、B
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
3、D
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
4、C
【分析】
由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
【详解】
解:∵OA=OB,,
∴∠BAO=.
∴∠AOB=130°.
∴=∠AOB=65°.
故选:C.
【点睛】
此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
5、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
6、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
7、C
【详解】
解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】
本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
8、C
【分析】
根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
【详解】
解:∵∠BOC=130°,
∴∠BDC=∠BOC=65°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADC=90°-65°=25°,
故选:C.
【点睛】
本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
9、A
【分析】
分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
【详解】
解:连接BO,并延长交⊙O于D,连结DC,
∵∠A=30°,
∴∠D=∠A=30°,
∵BD为直径,
∴∠BCD=90°,
在Rt△BCD中,BC=3,∠D=30°,
∴BD=2BC=6,
∴OB=3.
故选A.
【点睛】
本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
10、B
【分析】
由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
【详解】
由题意以及旋转的性质知AD=AB,∠BAD=60°
∴∠ADB=∠ABD
∵∠ADB+∠ABD+∠BAD=180°
∴∠ADB=∠ABD=60°
故为等边三角形,即AB= AD =BD=2
则CD=BC-BD=4-2=2
故选:B.
【点睛】
本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
二、填空题
1、或
【分析】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
【详解】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
如图所示:
∵,
∴,,
∵点A绕点G顺时针旋转90°后得到点,
∴,,
∴,
∵轴,轴,
∴,
∴,
∴,
在与中,
,
∴,
∴,,
∴,
∴,
在中,由勾股定理得:,
解得:或,
∴或.
故答案为:,.
【点睛】
本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
2、##
【分析】
连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
【详解】
解:如图,连接,延长交于点,连接,
都是的直径,
,
,
,
在中,,
,
平分,且,
,
,
,
,
如图,作,交于点,
,
在中,,
,
设,则,
,
,
解得或(不符题意,舍去),
则,
故答案为:.
【点睛】
本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
3、3
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
4、
【分析】
根据旋转找出规律后再确定坐标.
【详解】
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组循环,
∵,
∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
∵,
∴,
∴翻转前进的距离为:,
如图,过点B作BG⊥x于G,
则∠BAG=60°,
∴,
,
∴,
∴点B的坐标为.
故答案为:.
【点睛】
题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
5、
【分析】
先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
【详解】
过C作CD⊥OA于D
∵一次函数的图象与x轴交于点A,与y轴交于点B,
∴当时,,B点坐标为(0,1)
当时,,A点坐标为
∴
∵作的外接圆,
∴线段AB中点C的坐标为,
∴三角形BOC是等边三角形
∴
∵C的坐标为
∴
∴
故答案为:
【点睛】
本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
三、解答题
1、
(1)65°
(2)
【分析】
(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;
(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.
【小题1】
解:在Rt△ABC中,∠C=90°,∠BAC=40°,
∴∠ABC=50°,
∵将△ABC绕着点B逆时针旋转得到△FBE,
∴∠EBF=∠ABC=50°,AB=BF,
∴∠BAF=∠BFA=(180°-50°)=65°;
【小题2】
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∵将△ABC绕着点B逆时针旋转得到△FBE,
∴BE=BC=6,EF=AC=8,
∴AE=AB-BE=10-6=4,
∴AF=.
【点睛】
本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.
2、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
3、(1);(2);(3)或
【分析】
(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
【详解】
解:(1) O(0,0),Q(1,0),
P1(0,-1),P2(,),P3(-1,1)
不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以满足:OQ<PO<PQ且PO≤2,
所以是线段OQ的“潜力点”,
故答案为:P3
(2)∵点P为线段OQ的“潜力点”,
∴OQ<PO<PQ且PO≤2,
∵OQ<PO,
∴点P在以O为圆心,1为半径的圆外
∵PO<PQ,
∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
∵PO≤2,
∴点P在以O为圆心,2为半径的圆上或圆内
又∵点P在直线y=x上,
∴点P在如图所示的线段AB上(不包含点B)
过作轴,过作轴,垂足分别为
由题意可知△BOC和 △AOD是等腰三角形,
∴
∴-≤xp<-
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧
当时,过时,
即函数解析式为:
此时 则
当与半径为2的圆相切于时,则
由
而
当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧,
同理:当过 则 直线为
在直线上,
此时
当过时, 则
所以此时:
综上:的范围为:1<b≤或<b<-1
【点睛】
本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)连接,根据,可证.从而可得,,即可证明,故;
(2)证明,可得,即可证明.
【详解】
证明:(1)连接,如图:
∵为的直径,为的切线,
∴,
∵,
∴,.
∵,
∴,
∴.
在和中,
,
∴,
∴,
∵为的直径,
∴,即,
∴,
∵,
∴,
∴,即,
∵,
∴;
(2)由(1)知:,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到.
5、(1)4;(2)-1或-7
【分析】
(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;
(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.
【详解】
解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上
∴如图所示,连接,过点向作垂线交点为
∴
∵
.
(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为
,
在和中
点横坐标可表示为
∴p+q=-7或-1.
【点睛】
本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.
数学第24章 圆综合与测试同步练习题: 这是一份数学第24章 圆综合与测试同步练习题,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
初中数学沪科版九年级下册第24章 圆综合与测试综合训练题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。
数学九年级下册第24章 圆综合与测试课后作业题: 这是一份数学九年级下册第24章 圆综合与测试课后作业题,共28页。