终身会员
搜索
    上传资料 赚现金

    难点详解沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析)第1页
    难点详解沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析)第2页
    难点详解沪科版九年级数学下册第24章圆专题练习试题(含答案及详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试课时练习

    展开

    这是一份2021学年第24章 圆综合与测试课时练习,共27页。试卷主要包含了下列图形中,是中心对称图形的是,将一把直尺等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆专题练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4

    2、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(   

    A.4 B.6 C.8 D.10

    3、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(     

    A.60 B.90 C.120 D.180

    4、下列图形中,既是中心对称图形也是轴对称图形的是(   

    A. B. C. D.

    5、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻AB,在小路l上有一座亭子PAP分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻AB原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是(  

    A.20 m B.20m

    C.(20 - 20)m D.(40 - 20m

    6、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(  

    A.3 B.2 C.1 D.

    7、下列图形中,是中心对称图形的是(   

    A. B.

    C. D.

    8、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(   

    A.6 B. C.3 D.

    9、下列图案中既是轴对称图形,又是中心对称图形的是(   

    A.  B.

    C. D.

    10、下列判断正确的个数有(   

    ①直径是圆中最大的弦;

    ②长度相等的两条弧一定是等弧;

    ③半径相等的两个圆是等圆;

    ④弧分优弧和劣弧;

    ⑤同一条弦所对的两条弧一定是等弧.

    A.1个 B.2个 C.3个 D.4个

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、两直角边分别为6、8,那么的内接圆的半径为____________.

    2、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

    3、如图,半圆O中,直径AB=30,弦CDAB长为6π,则由ACAD围成的阴影部分面积为_______.

    4、如图,在平面直角坐标系中,点N是直线上动点,M上动点,若点C的坐标为,且y轴相切,则长度的最小值为____________.

    5、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在中,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F

    (1)求的度数;

    (2)若,且,求DF的长.

    2、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,AB两点均在格点上.请按要求在图①,图②,图③中画图:

    (1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.

    (2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,CD两点均在格点上.

    (3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.

    3、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E

    (1)求证:ADEC

    (2)若AD=6,求线段AE的长.

    4、如图,以四边形的对角线为直径作圆,圆心为,点上,过点的延长线于点,已知平分

    (1)求证:切线;

    (2)若,求的半径和的长.

    5、问题:如图,的直径,点内,请仅用无刻度的直尺,作出边上的高.

    小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.

    作法:如图,

    ①延长于点,延长于点

    ②分别连接并延长相交于点

    ③连接并延长交于点

    所以线段即为边上的高.

    (1)根据小芸的作法,补全图形;

    (2)完成下面的证明.

    证明:∵的直径,点上,

    ________°.(______)(填推理的依据)

    ,________是的两条高线.

    所在直线交于点

    ∴直线也是的高所在直线.

    边上的高.

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.

    【详解】

    解:∵在RtABC中,AB=6,BC=8,

    由旋转性质可知,AB= AB'=6,BC= B'C'=8,

    B'C=10-6=4,

    RtB'C'C中,

    故选:D.

    【点睛】

    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.

    2、A

    【分析】

    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.

    【详解】

    解:∵AB是⊙O的直径,

    ∵∠BAC=30°,BC=2,

    故选:A

    【点睛】

    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.

    3、C

    【分析】

    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.

    【详解】

    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.

    故选C.

    【点睛】

    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.

    4、A

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;

    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.

    故选:A.

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    5、D

    【分析】

    根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当OP共线时,距离最短,计算即可.

    【详解】

    ∵人工湖面积尽量小,

    ∴圆以AB为直径构造,设圆心为O

    过点BBC,垂足为C

    AP分别位于B的西北方向和东北方向,

    ∴∠ABC=∠PBC=∠BOC=∠BPC=45°,

    OC=CB=CP=20,

    OP=40,OB==

    ∴最小的距离PE=PO-OE=40 - 20m),

    故选D

    【点睛】

    本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.

    6、B

    【分析】

    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.

    【详解】

    解:连接OC,如图

    AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,

    故选:B

    【点睛】

    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出

    7、C

    【分析】

    根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.

    【详解】

    A、不是中心对称图形,不符合题意;

    B、不是中心对称图形,不符合题意;

    C、是中心对称图形,符合题意;

    D、不是中心对称图形,不符合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.

    8、D

    【分析】

    如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为

    【详解】

    解:如图所示,设圆的圆心为O,连接OCOB

    ACAB都是圆O的切线,

    ∴∠OCA=∠OBA=90°,OC=OB

    又∵OA=OA

    RtOCARtOBAHL),

    ∴∠OAC=∠OAB

    ∵∠DAC=60°,

    ∴∠AOB=30°,

    OA=2AB=6,

    ∴圆O的直径为

    故选D.

    【点睛】

    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.

    9、B

    【分析】

    根据中心对称图形与轴对称图形的概念逐项分析

    【详解】

    解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;

    B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;

    C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    故选B

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.

    10、B

    【详解】

    ①直径是圆中最大的弦;故①正确,

    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确

    ③半径相等的两个圆是等圆;故③正确

    ④弧分优弧、劣弧和半圆,故④不正确

    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.

    综上所述,正确的有①③

    故选B

    【点睛】

    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.

    二、填空题

    1、5

    【分析】

    直角三角形外接圆的直径是斜边的长.

    【详解】

    解:由勾股定理得:AB==10,

    ∵∠ACB=90°,

    AB是⊙O的直径,

    ∴这个三角形的外接圆直径是10,

    ∴这个三角形的外接圆半径长为5,

    故答案为:5.

    【点睛】

    本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.

    2、20

    【分析】

    先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.

    【详解】

    ∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,

    ∴∠ADC=∠D=90°,∠DAD′=α

    ∵∠ABC=90°,

    ∴∠BAD’=180°-∠1=180°-110°=70°,

    ∴∠DAD′=90°-70°=20°,

    α=20°.

    故答案为20.

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    3、45

    【分析】

    连接OCOD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.

    【详解】

    解:连接OCOD

    ∵直径AB=30,

    OC=OD=

    CDAB

    SACD=SOCD

    长为6π

    ∴阴影部分的面积为S阴影=S扇形OCD=

    故答案为:45π

    【点睛】

    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.

    4、-2

    【分析】

    由图可知,当CNABCMN三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.

    【详解】

    由图可知,当CNABCMN三点共线时,长度最小

    ∵直线AB的解析式为

    x=0时,y=5,当y=0时,x=5

    B(0,5),A(5,0)

    AO=BO,△AOB是等腰直角三角形

    ∴∠BAO=90°

    CNAB时,则△ACN是等腰直角三角形

    CN=AN

    C

    AC=7

    AC2=CN2+AN2=2CN2

    CN=

    CMN三点共线时,长度最小

    MN=CN-CM=-2

    故答案为:-2.

    【点睛】

    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.

    5、60

    【分析】

    正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.

    【详解】

    360°÷6=60°

    故答案为:60

    【点睛】

    本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.

    三、解答题

    1、(1)45°;(2)

    【分析】

    (1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;

    (2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.

    【详解】

    解:(1)由旋转可知:

    由三角形内角和定理得

    ∴点ADFE共圆.

    (2)连接EB

    又∵

    中,

    【点睛】

    本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.

    2、(1)见解析;(2)见解析;(3)见解析

    【分析】

    (1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);

    (2)作边长为2,高为4的平行四边形即可;

    (3)根据(1)的结论,作BG边的中线,即可得解.

    【详解】

    解:(1)如图①中,△ABC即为所求作(答案不唯一);

    (2)如图②中,平行四边形ABCD即为所求作;

    (3)如图③中,△ABC即为所求作(答案不唯一);

    AB=AGBC=CG

    ACBG

    ∵△ABG的面积为

    ∴△ABC的面积为5,且∠ACB=90°.

    【点睛】

    本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    3、(1)见解析;(2)6

    【分析】

    (1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;

    (2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.

    【详解】

    证明:(1)连接OC

    CE是⊙O的切线,

    ∴∠OCE

    ∵∠ABC

    ∴∠AOC=2∠ABC

    ∵∠AOC+∠OCE

    ADEC

    (2)解:过点AAFECEC于点F

    ∵∠AOCOAOC

    ∴∠OAC

    ∵∠BAC

    ∴∠BAD

    ADEC

    ∵∠OCE,∠AOC,∠AFC=90°,

    ∴四边形OAFC是矩形,

    OAOC

    ∴四边形OAFC是正方形,

    RtAFE中,

    AE=2AF=6.

    【点睛】

    本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.

    4、

    (1)证明见解析

    (2)

    【分析】

    (1)连接OA,根据已知条件证明OAAE即可解决问题;

    (2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.

    (1)

    证明:如图,连接OA

    AECD

    ∴∠DAE+∠ADE=90°.

    DA平分∠BDE

    ∴∠ADE=∠ADO

    又∵OA=OD

    ∴∠OAD=∠ADO

    ∴∠DAE+∠OAD=90°,

    OAAE

    AE是⊙O切线;

    (2)

    解:如图,取CD中点F,连接OF

    OFCD于点F

    ∴四边形AEFO是矩形,

    CD=6,

    DF=FC=3.

    RtOFD中,OF=AE=4,

    RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,

    AD的长是

    【点睛】

    本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.

    5、(1)见详解;(2)90,直径所对的圆周角是直角,BD

    【分析】

    (1)根据作图步骤作出图形即可;

    (2)根据题意填空,即可求解.

    【详解】

    解:(1)如图,CH为△ABC中AB边上的高;

    (2)证明:∵的直径,点上,

    ___90_°.(__直径所对的圆周角是直角_)(填推理的依据)

    ,_BD__是的两条高线.

    所在直线交于点

    ∴直线也是的高所在直线.

    边上的高.

    故答案为:90,直径所对的圆周角是直角,BD

    【点睛】

    本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.

     

    相关试卷

    2021学年第24章 圆综合与测试精练:

    这是一份2021学年第24章 圆综合与测试精练,共33页。

    2021学年第24章 圆综合与测试同步测试题:

    这是一份2021学年第24章 圆综合与测试同步测试题,共29页。

    沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共40页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map