2021学年第24章 圆综合与测试课后作业题
展开这是一份2021学年第24章 圆综合与测试课后作业题,共28页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
3、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )
A.1cm B.2cm C.3cm D.4cm
5、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
6、已知⊙O的半径为4,,则点A在( )
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
7、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
A. B. C. D.
8、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
9、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
10、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )
A.8 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
2、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.
3、边长为2的正三角形的外接圆的半径等于___.
4、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.
5、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
2、解题与遐想.
如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…
数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?
计算验证
(1)通过计算求出Rt△ABC的面积.
拼图演绎
(2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.
尺规作图
(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)
3、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
4、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
(1)求证:AC为⊙O的切线;
(2)若⊙O半径为2,OD=4.求线段AD的长.
5、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.
(1)求证:直线CD是⊙O的切线;
(2)若,,求OC的长.
-参考答案-
一、单选题
1、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
2、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
3、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
4、B
【分析】
连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
【详解】
解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=8cm,
∴BD=AB=4(cm),
由题意得:OB=OC==5cm,
在Rt△OBD中,OD=(cm),
∴CD=OC-OD=5-3=2(cm),
即水的最大深度为2cm,
故选:B.
【点睛】
本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
5、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
6、C
【分析】
根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
【详解】
解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
∴d>r,
∴点A在⊙O外,
故选:C.
【点睛】
本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
7、B
【分析】
由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
【详解】
解:根据题意,如图:
∵AB是的直径,OD是半径,,
∴AE=CE,
∴阴影CED的面积等于AED的面积,
∴,
∵,,
∴,
∴;
故选:B
【点睛】
本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
8、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
9、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
10、C
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
二、填空题
1、140
【分析】
作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
【详解】
解:如图所示,作的外接圆,
∵点I是的内心,
∴BI,CI分别平分和,
∴,,
∵,
∴,
∴,
∴,
∵点O是的外心,
∴,
故答案为:140.
【点睛】
题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
2、9cm
【分析】
由弧长公式即可求得弧的半径.
【详解】
∵
∴
故答案为:9cm
【点睛】
本题考查了扇形的弧长公式,善于对弧长公式变形是关键.
3、
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
4、
【分析】
设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
【详解】
解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:
∵△ABC绕着点C逆时针旋转60°,
∴∠ACM=60°,CA=CM,
∴△ACM是等边三角形,
∴CM=AM①,∠ACM=∠MAC=60°,
∵∠B=90°,AB=BC=1,
∴∠BCA=∠CAB=45°,AC==CM,
∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
∴∠ECM=∠MAF=75°②,
∵MF⊥BA,ME⊥BC,
∴∠E=∠F=90°③,
由①②③得△EMC≌△FMA,
∴ME=MF,
而MF⊥BA,ME⊥BC,
∴BM平分∠EBF,
∴∠CBD=45°,
∴∠CDB=180°-∠BCA-∠CBD=90°,
Rt△BCD中,BD=BC=,
Rt△CDM中,DM=CM =,
∴BM=BD+DM=,
故答案为:.
【点睛】
本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
5、
【分析】
过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.
【详解】
解:过O作OC⊥AB,则有C为AB的中点,
∵OA=OB,∠AOB=90°,AB=a,
∴根据勾股定理得: OA2+OB2=AB,
∴OA=,
在Rt△AOC中,OA=,AC=AB=,
根据勾股定理得:OC==.
故答案为:;
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
三、解答题
1、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
2、(1)S△ABC=20;(2)见解析;(3)见解析.
【分析】
(1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
【详解】
解:(1)如图1,
设⊙O的半径为r,
连接OE,OF,
∵⊙O内切于△ABC,
∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
∴∠OEC=∠OFC=∠C=90°,
∴四边形ECFO是矩形,
∴CF=OE=r,CE=OF=r,
∴AC=4+r,BC=5+r,
在Rt△ABC中,由勾股定理得,
(r+4)2+(r+5)2=92,
∴r2+9r=20,
∴S△ABC=
=
=
=
=20;
(2)
如图2,
(3)设△ABC的内切圆记作⊙F,
∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
∴∠BAF=∠CAB,∠ABF=,
∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
∴∠AFB=135°,
可以按以下步骤作图(如图3):
①以BA为直径作圆,作AB的垂直平分线交圆于点E,
②以E为圆心,AE为半径作圆,
③过点D作AB的垂线,交圆于F,
④连接EF并延长交圆于C,连接AC,BC,
则△ABC就是求作的三角形.
【点睛】
本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
3、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
4、(1)见解析;(2)4
【分析】
(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
【详解】
解:(1)连接OB,
∵AB是⊙O的切线,
∴OB⊥AB,
即∠ABO=90°,
∵BC是弦,OA⊥BC,
∴CE=BE,
∴AC=AB,
在△AOB和△AOC中,
,
∴△AOB≌△AOC(SSS),
∴∠ACO=∠ABO=90°,
即AC⊥OC,
∴AC是⊙O的切线;
(2)在Rt△BOD中,由勾股定理得,
BD==2,
∵sinD==,⊙O半径为2,OD=4.
∴=,
解得AC=2,
∴AD=BD+AB=4.
【点睛】
本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
5、(1)见解析;(2)
【分析】
(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
从而可得,则可求得OC的长.
【详解】
(1)连接OD,
∵,
∴.
又∵,
∴,
∴.
在与中,
∴,
∴.
又∵,
∴,
∴是的切线.
(2)∵,
∴,
∴,
∴.
又∵,
∴,
∴,
∴,
∴,
∴,
∴OC=15
【点睛】
本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
相关试卷
这是一份初中数学第24章 圆综合与测试随堂练习题,共29页。
这是一份数学第24章 圆综合与测试同步练习题,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。