初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共17页。试卷主要包含了下列事件中,属于必然事件的是,下列四幅图的质地大小等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
2、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )
A. B. C. D.
3、下列说法中正确的是( )
A.“打开电视,正在播放《新闻联播》”是必然事件
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖
C.想了解某市城镇居民人均年收入水平,宜采用抽样调查
D.我区未来三天内肯定下雪
4、下列事件中,属于必然事件的是( )
A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球
C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边
5、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
6、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:
摸球次数 | 10 | 40 | 80 | 200 | 500 | 800 |
摸到红球次数 | 3 | 16 | 20 | 40 | 100 | 160 |
摸到红球的频率 | 0.3 | 0.4 | 0.25 | 0.2 | 0.2 | 0.2 |
则袋中的红球个数可能有( )
A.16个 B.8个 C.4个 D.2个
7、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )
A. B. C. D.
8、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
A. B. C. D.1
9、下列词语所描述的事件,属于必然事件的是( )
A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼
10、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.
2、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
3、已知盒子里有6个黑色球和n个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是,则n是______.
4、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
5、用黑白两种全等的等腰直角三角形地砖铺成如图所示的方形地面,一只小虫在方形地面上任意爬行,并随机停留在方形地面某处,则小虫停留在黑色区域的概率是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.
2、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,
(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?
(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.
3、在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线.
(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率.
4、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.
(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;
(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.
5、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
-参考答案-
一、单选题
1、A
【分析】
根据事件发生的可能性即可判断.
【详解】
∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当
∴甲获胜的可能性比乙大
故选A.
【点睛】
此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.
2、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.
3、C
【分析】
根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;
B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;
C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;
D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.
4、D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解;A、小明买彩票中奖是随机事件,不符合题意;
B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;
C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;
D、三角形两边之和大于第三边是必然事件,符合题意;
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
6、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
7、A
【分析】
根据概率公式计算即可.
【详解】
解:袋中装有3个红球和5个绿球共8个球,
从袋中随机摸出1个球是红球的概率为,
故选:A.
【点睛】
此题考查了概率的计算公式,正确掌握计算公式是解题的关键.
8、C
【分析】
根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
,,,
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
9、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.守株待兔是随机事件,故该选项不符合题意;
B.水中捞月是不可能事件,故该选项不符合题意;
C.水滴石穿是必然事件,故该选项符合题意;
D.缘木求鱼是不可能事件,故该选项不符合题意.
故选:C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
10、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
二、填空题
1、12
【分析】
根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.
【详解】
解:由题意知摸到黄色球的频率稳定在40%,
所以摸到白色球的概率:1-40%=60%,
因为不透明的布袋中,有黄色、白色的玻璃球共有20个,
所以布袋中白色球的个数为20×60%=12(个),
故答案为:12.
【点睛】
本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.
2、
【分析】
画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.
【详解】
解:画树状图如图:
共有12个等可能的结果,摸到的两个红球的有2种结果,
摸到的两个红球的概率是,
故答案为:.
【点睛】
本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.
3、6
【分析】
根据概率公式计算即可;
【详解】
由题可得,取出红色球的概率是,
∴,
∴,
经检验,是方程的解;
故答案是:6.
【点睛】
本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.
4、
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
5、##
【分析】
先由图得出地砖的总数及黑色地砖的块数,让黑色地砖的块数除以地砖总数即可.
【详解】
解:可观察图形,黑色地砖与白色地砖的面积相等,停在黑色和白色地砖上的概率是相同的,由此可知小虫停在黑地砖上的概率为 ,
故答案为:
【点睛】
本题考查了几何概率,掌握“几何概率=相应的面积与总面积之比.”是解本题的关键.
三、解答题
1、见解析,
【分析】
画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】
解:画树状图如下:
由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果,
∴(两个数字之和是偶数).
【点睛】
本题考查了利用列表法与树状图法求概率,根据列表法和树状图法展示所有可能的结果,再从中选出符合条件的结果是解题关键.
2、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)根据列表法求概率即可
【详解】
(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;
(2)列表如下,
| 5 | 5 | 8 | 8 |
5 | \ | 55 | 85 | 85 |
5 | 55 | \ | 85 | 85 |
8 | 58 | 58 | \ | 88 |
8 | 58 | 58 | 88 | \ |
共有12种等可能结果,其中凑成一对的有4种,
随机抽取两张扑克牌成为一对的概率为
【点睛】
本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键.
3、(1)6;(2)
【分析】
(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;
(2)根据网格的特点判断直角三角形,根据列表法求得概率
【详解】
(1)如图,
从点出发,只能向右或向下,先向右的路线为:,,
先向下的路线为:,,
共6条路线
故答案为:6
(2)列表如下,
| A | B | C |
D、E | ADE | BDE | CDE |
D、F | ADF | BDF | CDF |
E、F | AEF | BEF | CEF |
根据列表可知共有9种等可能情况,只有CDE,CDF, CEF是直角三角形
则所画三角形是直角三角形的概率为
【点睛】
本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键.
4、
(1)3种可能,分别是“微信”“QQ”,“电话”
(2)
【分析】
(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.
(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
(1)
解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.
(2)
解:画出树状图,如图所示
所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为.
【点睛】
本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
5、(1)袋中黄球的个数为1个;(2)
【分析】
(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;
(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;
【详解】
解:(1)设袋中黄球的个数为x个,
根据题意得,
解得x=1,
经检验,x=1是方程的根,
所以袋中黄球的个数为1个;
(2)画树状图为:
共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,
所以两次摸出的都是红球的概率.
【点睛】
本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题,共20页。试卷主要包含了下列事件是随机事件的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了若a是从“等内容,欢迎下载使用。