终身会员
搜索
    上传资料 赚现金

    难点详解沪科版九年级数学下册第26章概率初步同步测评练习题(精选)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第26章概率初步同步测评练习题(精选)第1页
    难点详解沪科版九年级数学下册第26章概率初步同步测评练习题(精选)第2页
    难点详解沪科版九年级数学下册第26章概率初步同步测评练习题(精选)第3页
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题

    展开

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共22页。试卷主要包含了下列说法中,正确的是,下列事件是随机事件的是,下列说法正确的是等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步同步测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是(     

    A.数字之和是0的概率为0 B.数字之和是正数的概率为

    C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同

    2、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法(   

    A.有道理,池中大概有1200尾鱼 B.无道理

    C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼

    3、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是(   

    A. B. C. D.

    4、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是(   

    A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1

    C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7

    5、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:

    抛掷次数m

    500

    1000

    1500

    2000

    2500

    3000

    4000

    5000

    “正面向上”的次数n

    265

    512

    793

    1034

    1306

    1558

    2083

    2598

    “正面向上”的频率

    0.530

    0.512

    0.529

    0.517

    0.522

    0.519

    0.521

    0.520

    下面有3个推断:

    ①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是(  

    A.② B.①③ C.②③ D.①②③

    6、下列说法中,正确的是(   

    A.“射击运动员射击一次,命中靶心”是必然事件

    B.事件发生的可能性越大,它的概率越接近1

    C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖

    D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得

    7、下列事件是随机事件的是(  

    A.2021年全年有402天

    B.4年后数学课代表会考上清华大学

    C.刚出生的婴儿体重50公斤

    D.袋中只有10个红球,任意摸出一个球是红球

    8、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是(    ).

    A. B. C. D.

    9、下列说法正确的是(  )

    A.同时投掷两枚相同的硬币,出现“一正一反”的概率是

    B.事件“两个正数相加,和是正数”是必然事件

    C.数2和8的比例中项是4

    D.同一张底片洗出来的两张照片是位似图形

    10、下列说法中正确的是(   

    A.一组数据2、3、3、5、5、6,这组数据的众数是3

    B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1

    C.为了解长沙市区全年水质情况,适合采用全面调查

    D.画出一个三角形,其内角和是180°为必然事件

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.

    2、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:

    移植的棵数n

    1000

    1500

    2500

    4000

    8000

    15000

    20000

    30000

    成活的棵数m

    865

    1356

    2220

    3500

    7056

    13170

    17580

    26430

    成活的频率

    0.865

    0.904

    0.888

    0.875

    0.882

    0.878

    0.879

    0.881

    估计该种幼树在此条件下移植成活的概率为_______.

    3、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.

    4、某批青稞种子在相同条件下发芽试验结果如下表:

    每次试验粒数

    50

    100

    300

    400

    600

    1000

    发芽频数

    47

    96

    284

    380

    571

    948

    估计这批青稞发芽的概率是___________.(结果保留到0.01)

    5、不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是 _________ .

    三、解答题(5小题,每小题10分,共计50分)

    1、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

    (1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;

    (2)这个游戏公平吗?若不公平,请你设计一个公平的游戏规则.

    2、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.

    (1)这次调查的总人数是           人;

    (2)扇形统计图中,B类扇形的圆心角是           °;

    (3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.

    3、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录

     

    特级柑橘的售价(元/千克)

    14

    15

    16

    17

    18

    特级柑橘的日销售量(千克)

    1000

    950

    900

    850

    800

     (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;

    (2)按此市场调节的观律,

    ①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由

    ②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.

    4、为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:

    组别

    分数段(分)

    频数

    频率

    A

    60≤x<70

    30

    0.1

    B

    70≤x<80

    90

    n

    C

    80≤x<90

    m

    0.4

    D

    90≤x<100

    60

    0.2

    (1)在表中:m      n      

    (2)补全频数分布直方图;

    (3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在      组;

    (4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中AC两组学生的概率是多少?并列表或画树状图说明.

    5、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:

    试验次数

    40

    80

    120

    160

    200

    240

    280

    320

    360

    400

    出现方块的次数

    11

    18

    a

    40

    49

    63

    68

    80

    91

    100

    出现方块的频率

    0.275

    0.225

    0.250

    0.250

    0.245

    0.263

    0.243

    b

    0.253

    0.250

    (1)将数据表a、b补充完整;

    (2)从上表中可以估计出现方块的概率是________;

    (3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗.若不是,有利于谁.请你用概率知识(列表或画树状图)加以分析说明.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.

    【详解】

    解:列树状图如下:

    共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,

    A. 数字之和是0的概率为0,故该项符合题意;   

    B. 数字之和是正数的概率为,故该项不符合题意;

    C. 卡片上面的数字之和是负数的概率为,故该项不符合题意;

    D. 数字之和分别是负数、0、正数的概率不相同,故该项不符合题意;

    故选:A

    【点睛】

    此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.

    2、A

    【分析】

    设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.

    【详解】

    解:设池中大概有鱼x尾,由题意得:

    解得:

    经检验:是原方程的解;

    ∴池塘主的做法有道理,池中大概有1200尾鱼;

    故选A.

    【点睛】

    本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.

    3、A

    【分析】

    如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.

    【详解】

    解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,

    骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,

    所以骰子落地时朝上的数为偶数的概率是 

    故选A

    【点睛】

    本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.

    4、C

    【分析】

    将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.

    【详解】

    解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;

    B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;

    C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;

    D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;

    故选:C

    【点睛】

    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    5、C

    【分析】

    根据概率公式和图表给出的数据对各项进行判断,即可得出答案.

    【详解】

    解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;

    ②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;

    ③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;

    故选:C

    【点睛】

    本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.

    6、B

    【分析】

    根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.

    【详解】

    解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;

    事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;

    某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;

    图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.

    故选择B.

    【点睛】

    本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.

    7、B

    【分析】

    随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.

    【详解】

    解:A、2021年全年有402天,是不可能事件,不符合题意;

    B、4年后数学课代表会考上清华大学,是随机事件,符合题意;

    C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;

    D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,

    故选:B.

    【点睛】

    本题考查随机事件,理解随机事件的概念是解答的关键.

    8、B

    【分析】

    根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.

    【详解】

    解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:

     

    (跳,跳)

    (跳,坐)

    (跳,握)

    (坐,跳)

    (坐,坐)

    (坐,握)

    (握,跳)

    (握,坐)

    (握,握)

    由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,

    则两人抽到跳远的概率为:

    故选:B.

    【点睛】

    题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.

    9、B

    【分析】

    根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.

    【详解】

    解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;

    B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;

    C、数2和8的比例中项是±4,本选项说法错误,不符合题意;

    D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;

    故选:B.

    【点睛】

    本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.

    10、D

    【分析】

    根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.

    【详解】

    A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;

    B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;

    C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;

    D. 画出一个三角形,其内角和是180°为必然事件,正确;

    故选D.

    【点睛】

    此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.

    二、填空题

    1、12

    【分析】

    根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.

    【详解】

    解:由题意知摸到黄色球的频率稳定在40%,

    所以摸到白色球的概率:1-40%=60%,

    因为不透明的布袋中,有黄色、白色的玻璃球共有20个,

    所以布袋中白色球的个数为20×60%=12(个),

    故答案为:12.

    【点睛】

    本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.

    2、0.880

    【分析】

    大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.

    【详解】

    解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,

    从上表可以看出,频率成活的频率,即稳定于0.880左右,

    ∴估计这种幼树移植成活率的概率约为0.88.

    故答案为:0.880.

    【点睛】

    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.

    3、4

    【分析】

    设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.

    【详解】

    设黄球的个数为x

    ∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,

    解得:

    ∴布袋中红色球的个数很可能是(个).

    故答案为:4.

    【点睛】

    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.

    4、0.95

    【分析】

    利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.

    【详解】

    观察表格得到这批青稞发芽的频率稳定在0.95附近,

    则这批青稞发芽的概率的估计值是0.95,

    故答案为:0.95.

    【点睛】

    此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.

    5、

    【分析】

    先确定事件的所有等可能性,再确定被求事件的等可能性,根据概率计算公式计算即可.

    【详解】

    ∵事件的所有等可能性有1+2=3种,摸出红球事件的等可能性有1种,

    ∴摸出红球的概率是

    故答案为:

    【点睛】

    本题考查了简单概率的计算,熟练掌握概率计算公式是解题的关键.

    三、解答题

    1、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.

    【分析】

    (1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;

    (2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可.

    【详解】

    解:(1)根据题意画图如下:

    由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,

    则小李获胜的概率是,小王获胜的概率是

    (2)由(1)知,小李获胜的概率是,小王获胜的概率是

    所以游戏不公平;

    游戏规则:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

    【点睛】

    本题考查的是游戏公平性的判断.注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.

    2、(1)40;(2)108;(3)

    【分析】

    (1)根据A类别人数及其所占百分比可得被调查的总人数;

    (2)用360°乘以B类别人数所占比例即可;

    (3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.

    【详解】

    解:(1)参加这次调查的学生总人数为6÷15%=40(人);

    故答案为:40;

    (2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,

    故答案为:108;

    (3)画树状图为:

    共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,

    ∴所抽取的2名学生恰好是1名男生和1名女生的概率为

    【点睛】

    本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.

    3、(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析

    【分析】

    (1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.

    (2)①根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;

    ②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;

    【详解】

    (1)由图可知损坏率在0.1上下波动,并趋于稳定

    故所求为千克

    (2)①设销售量y与售价x的函数关系式为

    由题意可得函数图像过两点

    的函数关系式为

    代入,

    ∴当售价定为16.5元/千克,日销售量为875千克

    ②依题意得:12天内售完9000千克柑橘

    故日销售量至少为:(千克)

    解得

    设利润为w元,则

    ∴对称轴为

    ∴当wx的增大而增大

    ∴当时销售利润最大,最大利润为(元)

    【点睛】

    此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.

    4、(1)120,0.3;(2)见解析;(3)C;(4)

    【分析】

    (1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得mn的值;

    (2)根据(1)中所求结果即可补全频数分布直方图;

    (3)根据中位数的定义即可求解;

    (4)画树状图列出所有等可能结果,再找到抽中AC的结果,根据概率公式求解可得.

    【详解】

    解:(1)∵本次调查的总人数为30÷0.1=300(人),

    m=300×0.4=120,n=90÷300=0.3,

    故答案为:120,0.3;

    (2)补全频数分布直方图如下:

    (3)由于共有300个数据,则其中位数为第150、151个数据的平均数,

    而第150、151个数据的平均数均落在C组,

    ∴据此推断他的成绩在C组,

    故答案为:C

    (4)画树状图如下:

    由树状图可知,共有12种等可能结果,其中抽中AC两组同学的有2种结果,

    ∴抽中AC两组同学的概率为

    【点睛】

    本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息.

    5、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析

    【详解】

    (1)根据频数=总数×频率,频率=频数÷总数计算,补全即可;

    (2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;

    (3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论.

    【分析】

    解:(1)由题意得:

    填表如下所示:

    试验次数

    40

    80

    120

    160

    200

    240

    280

    320

    360

    400

    出现方块的次数

    11

    18

    a

    40

    49

    63

    68

    80

    91

    100

    出现方块的频率

    0.275

    0.225

    0.250

    0.250

    0.245

    0.263

    0.243

    b

    0.253

    0.250

    (2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为

    (3)列表如下:

     

    红桃

    1

    2

    3

    1

    2

    3

    4

    2

    3

    4

    5

    3

    4

    5

    6

    由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,

    甲方赢乙方赢

    乙方赢甲方赢

    ∴这个游戏对双方是不公平的,有利于乙方.

    【点睛】

    本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解.

     

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共20页。试卷主要包含了下列事件是随机事件的是,下列说法中正确的是,下列事件中,属于不可能事件的是,下列事件中,属于必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法正确的是.,下列说法正确的是,下列说法正确的有等内容,欢迎下载使用。

    2021学年第26章 概率初步综合与测试一课一练:

    这是一份2021学年第26章 概率初步综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map