![精品试题沪科版九年级数学下册第26章概率初步重点解析试卷(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12691869/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪科版九年级数学下册第26章概率初步重点解析试卷(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12691869/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪科版九年级数学下册第26章概率初步重点解析试卷(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12691869/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中沪科版第26章 概率初步综合与测试练习
展开这是一份初中沪科版第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列事件中,属于不可能事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列成语描述的事件为随机事件的是( )
A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升
2、下列事件是必然事件的是( )
A.明天会下雨
B.抛一枚硬币,正面朝上
C.通常加热到100℃,水沸腾
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
3、下列说法正确的是( )
A.调查“行云二号”各零部件的质量适宜采用抽样调查方式
B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83
C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖
D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定
4、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )
A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1
C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7
5、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )
A.1 B.1 C. D.1
6、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).
A. B. C. D.1
7、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )
A. B. C. D.
8、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
9、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )
A. B. C. D.
10、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):
射击的次数 | 20 | 40 | 100 | 200 | 400 | 1000 |
“射中9环以上”的次数 | 15 | 33 | 78 | 158 | 321 | 801 |
“射中9环以上”的频率 | 0.76 | 0.83 | 0.78 | 0.79 | 0.80 | 0.80 |
根据试验所得数据,估计“射中9环以上”的概率是 _____.
2、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.
3、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.
4、从3,0,,,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是__________.
5、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.
三、解答题(5小题,每小题10分,共计50分)
1、 “垃圾分类”进校园,锦江教育出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.
(1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)
①必然事件 ②不可能事件 ③随机事件
(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.
A.有害垃圾 B.厨余垃圾
C.可回收垃圾 D.其他垃圾
2、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,3;乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部).
(1)转动甲转盘,指针指向3的概率是 ;
(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率.
3、将正面分别写着字母A,B,C的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记下卡片上的字母;放回卡片洗匀后,背面向上放在桌面上,再从卡片中随机抽取一张卡片,记下卡片上的字母.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;
(2)求取出的两张卡片上的字母相同的概率.
4、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)王老师被分配到“就餐监督岗”的概率为 ;
(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.
5、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.
(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案)
-参考答案-
一、单选题
1、C
【分析】
根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.
【详解】
解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;
B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;
C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;
D、旭日东升,是必然会发生的,不是随机事件,不符合题意;
故选C.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
2、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.明天会下雨,属于随机事件,故该选项不符合题意;
B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;
C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
3、B
【分析】
分别对各个选项进行判断,即可得出结论.
【详解】
解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;
B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;
C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;
D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;
故选:B.
【点睛】
本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.
4、C
【分析】
将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.
【详解】
解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;
B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;
C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;
D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、A
【分析】
设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.
【详解】
解:如图所示,设正方形ABCD的边长为a,
∵四边形ABCD是正方形,
∴∠C=90°,
∴
,
∴,
∴石子落在阴影部分的概率是,
故选A.
【点睛】
本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.
6、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.
【详解】
解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,
任意摸出1个,摸到红球的概率是:1÷3=.
故选:C.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
7、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.
8、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
9、C
【分析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,
∴随机抽取一个球是黄球的概率是.
故选C.
【点睛】
本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.
10、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
估计摸出黑球的概率为0.667,
则摸出绿球的概率为,
袋子中球的总个数为,
由此估出黑球个数为,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
二、填空题
1、0.8
【分析】
大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
解:根据表格数据可知:
根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.
故答案为:0.8.
【点睛】
本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
2、
【分析】
根据简单概率公式进行计算即可.
【详解】
解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.
则指针对准红色区域的可能性大小是
故答案为:
【点睛】
本题考查了几何概率,立即题意是解题的关键.
3、
【分析】
直接根据几何概率求解即可.
【详解】
解:图中共有9个小正方形,其中阴影部分共有5个小正方形,
∴从图中随机取一点,这点在阴影部分的概率是,
故答案为:.
【点睛】
本题考查几何概率求解,理解并掌握几何概率是解题关键.
4、
【分析】
由正比例函数的图象及其性质可判断3,0,,,五个数均符合,由一元二次方程根的判别式可判断出只有,,三个数符合题意,故概率为.
【详解】
∵的图象经过一、三象限
∴
即
3,0,,,这五个数均符合
关于x的方程其中
则
令
解得时关于x的方程有实数根
故,,三个数符合题意
则P=.
故答案为:.
【点睛】
本题考查了正比例函数图象及其性质和一元二次方程根的判别式.当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a,b,c的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.当时,方程有两个相等的实数根,不能说方程只有一个根.
5、
【分析】
袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.
【详解】
解:袋中有五个小球,3个红球,2个白球,形状材料均相同,
从中任意摸一个球,摸出红球的概率为,
故答案是:.
【点睛】
本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).
三、解答题
1、
(1)③
(2)
【分析】
(1)根据随机事件的相关概念可直接进行求解;
(2)根据列表法可直接进行求解概率.
(1)
解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;
故答案为③;
(2)
解:列表如下:
| A | B | C | D |
A | (A,A) | (A,B) | (A,C) | (A,D) |
B | (B,A) | (B,B) | (B,C) | (B,D) |
C | (C,A) | (C,B) | (C,C) | (C,D) |
D | (D,A) | (D,B) | (D,C) | (D,D) |
由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.
∴.
【点睛】
本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.
2、(1);(2).
【分析】
(1)利用概率公式求解指针指向3的概率即可;
(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可.
【详解】
解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;
所以转动甲转盘,指针指向3的概率是:
故答案为:;
(2)列表如下:
| 1 | 2 | 3 | 4 |
1 | 和2 | 和3 | 和4 | 和5 |
2 | 和3 | 和4 | 和5 | 和6 |
3 | 和4 | 和5 | 和6 | 和7 |
所有的等可能的结果数有12种,和为5的结果数有3种,
所以转动两个转盘指针指向的两个数字和是5的概率.
【点睛】
本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.
3、(1)列表见解析;(2)
【分析】
(1)首先根据题意画出表格,然后由表格即可求得所有等可能的结果;
(2)由(1)中的表格,可求取出的两张卡片上的字母相同的情况,然后利用概率公式求解即可求得答案.
【详解】
解:(1)根据题意列表得
| A | B | C |
A | |||
B | |||
C |
由表格知共有9种等可能性结果:,,,,,,,,.
(2)其中两张卡片上的字母相同有3种结果,.
【点睛】
此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
4、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.
【分析】
(1)直接利用概率公式计算;
(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.
【详解】
解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,
∴王老师被分配到“就餐监督岗”的概率=;
故答案为:;
(2)画树状图为:
由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,
∴李老师和王老师被分配到同一个监督岗的概率==.
【点睛】
本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
5、
(1),见解析
(2)
【解析】
(1)
列表如下
第一个十字路口\第二个 | 红灯 | 绿灯 |
红灯 | 红红 | 红绿 |
绿灯 | 绿红 | 绿绿 |
∵共有4种等可能情形,满足条件的有1种.
∴通过前2个十字路口时都是绿灯的概率.
(2)
画树状图如图,表示红灯,表示绿灯,
∵共有16种等可能情形,满足条件的有11种.
小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为
故答案为:
【点睛】
本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试测试题,共19页。试卷主要包含了一个不透明的口袋里有红,不透明的布袋内装有形状,下列事件中是必然事件的是,在一个不透明的盒子中装有红球,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试精练,共21页。试卷主要包含了下列事件中,属于必然事件的是,如图,有5张形状等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试练习题,共19页。试卷主要包含了下列事件是必然事件的是,下列说法错误的是等内容,欢迎下载使用。