![难点解析沪科版九年级数学下册第26章概率初步定向练习试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12691870/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第26章概率初步定向练习试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12691870/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第26章概率初步定向练习试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12691870/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题,共20页。试卷主要包含了下列事件是随机事件的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
2、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )
A.无放回的从中连续摸出三个红球是随机事件
B.从中摸出一个棕色球是随机事件
C.无放回的从中连续摸出两个白球是不可能事件
D.从中摸出一个红色球是必然事件
3、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
4、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为( )
A. B. C. D.
5、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
6、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).
A. B. C. D.1
7、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
8、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )
A.①②③ B.①③② C.③②① D.③①②
9、下列关于随机事件的概率描述正确的是( )
A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”
B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖
C.随机事件发生的概率大于或等于0,小于或等于1
D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率
10、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别.从袋中随机摸出1个球是红球的概率为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.
2、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).
3、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.
4、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.
5、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.
三、解答题(5小题,每小题10分,共计50分)
1、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:
年龄x(岁) | 人数 | 男性占比 |
x<20 | 4 | 50% |
20≤x<30 | m | 60% |
30≤x<40 | 25 | 60% |
40≤x<50 | 8 | 75% |
x≥50 | 3 | 100% |
(1)统计表中m的值为 ;
(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为 ;
(3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.
2、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者.
(1)抽取2名,求恰好都是女生的概率;
(2)抽取3名,恰好都是女生的概率是 .
3、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.
(1)甲从中随机选取A套餐的概率是 ;
(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.
4、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
5、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录
特级柑橘的售价(元/千克) | 14 | 15 | 16 | 17 | 18 |
特级柑橘的日销售量(千克) | 1000 | 950 | 900 | 850 | 800 |
(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;
(2)按此市场调节的观律,
①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由
②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.
-参考答案-
一、单选题
1、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、A
【分析】
随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.
【详解】
无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;
一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;
无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;
一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.
故选A.
【点睛】
本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.
3、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
4、A
【分析】
用红球的个数除以所有球的个数即可求得抽到红球的概率.
【详解】
解:∵共有5个球,其中红球有2个,
∴P(摸到红球)=,
故选:A.
【点睛】
此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.
5、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
6、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.
【详解】
解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,
任意摸出1个,摸到红球的概率是:1÷3=.
故选:C.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
7、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
8、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
9、D
【分析】
根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【详解】
解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;
随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;
在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;
故选:D.
【点睛】
本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、A
【分析】
根据概率公式计算即可.
【详解】
解:袋中装有3个红球和5个绿球共8个球,
从袋中随机摸出1个球是红球的概率为,
故选:A.
【点睛】
此题考查了概率的计算公式,正确掌握计算公式是解题的关键.
二、填空题
1、
【分析】
指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.
【详解】
解:观察转盘灰色区域的面积与总面积的比值为
故答案为:.
【点睛】
本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.
2、##
【分析】
根据概率的公式,利用圆的面积除以正方形的面积,即可求解
【详解】
解:根据题意得:飞镖落在阴影区域内的概率为
故答案为:
【点睛】
本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
3、
【分析】
直接根据几何概率求解即可.
【详解】
解:图中共有9个小正方形,其中阴影部分共有5个小正方形,
∴从图中随机取一点,这点在阴影部分的概率是,
故答案为:.
【点睛】
本题考查几何概率求解,理解并掌握几何概率是解题关键.
4、12
【分析】
根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.
【详解】
解:由题意知摸到黄色球的频率稳定在40%,
所以摸到白色球的概率:1-40%=60%,
因为不透明的布袋中,有黄色、白色的玻璃球共有20个,
所以布袋中白色球的个数为20×60%=12(个),
故答案为:12.
【点睛】
本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.
5、260
【分析】
先求出一等奖的概率,然后利用频数=总数×概率求解即可.
【详解】
解:由题意得:一等奖的概率=,
∴盒子中有“谢谢惠顾”张,
故答案为:260.
【点睛】
本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.
三、解答题
1、
(1)10
(2)180°
(3)见解析,
【分析】
(1)根据总数减去表格中其他数据即可求解;
(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;
(3)用列表法求概率即可.
(1)
故答案为:10
(2)
故答案为:
(3)
设两名男性用表示,两名女性用表示,根据题意,列表如下,
| ||||
| ||||
| ||||
| ||||
|
由上表可知,共有12种等可能的结果,符合条件的结果有8种,
故P(恰好抽到1名男性和1名女性)=
【点睛】
本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.
2、(1);(2)
【分析】
(1)利用列表法进行求解即可;
(2)利用树状图的方法列出所有可能的情况,再求解即可.
【详解】
解:(1)列表如下:
| 男 | 女1 | 女2 | 女3 |
男 |
| (女1,男) | (女2,男) | (女3,男) |
女1 | (男,女1) |
| (女2,女1) | (女3,女1) |
女2 | (男,女2) | (女1,女2) |
| (女3,女2) |
女3 | (男,女3) | (女1,女3) | (女2,女3) |
|
由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,
∴抽取2名,恰好都是女生的概率;
(2)列树状图如下:
由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,
∴抽取3名,恰好都是女生的概率,
故答案为:.
【点睛】
本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键.
3、(1);(2).
【分析】
(1)直接根据概率公式求解即可;
(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.
【详解】
解:(1)由题意,
∵推出A,B,C,D四种礼盒套餐,
∴甲从中随机选取A套餐的概率是;
故答案为:.
(2)根据题意,画树状图为:
共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,
∴甲、乙2人选取相同套餐的概率为:.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
4、
(1);
(2)两次都是红球的概率为
【分析】
(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;
(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.
(1)
解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,
∴,
其中是黄球的可能有一种,
∴,
故答案为:;;
(2)
四个球简写为“红1,红2,黄,蓝”,列表法为:
| 红1 | 红2 | 黄 | 蓝 |
红1 | (红1,红1) | (红1,红2) | (红1,黄) | (红1,蓝) |
红2 | (红2,红1) | (红2,红2) | (红2,黄) | (红2,蓝) |
黄 | (黄,红1) | (黄,红2) | (黄,黄) | (黄,蓝) |
蓝 | (蓝,红1) | (蓝,红2) | (蓝,黄) | (蓝,蓝) |
共有16种等可能的结果数,其中两次都是红球的有4种结果,
所以两次都是红球的概率为:.
【点睛】
题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键.
5、(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析
【分析】
(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.
(2)①根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;
②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;
【详解】
(1)由图可知损坏率在0.1上下波动,并趋于稳定
故所求为千克
(2)①设销售量y与售价x的函数关系式为
由题意可得函数图像过及两点
得
∴与的函数关系式为
把代入,
∴当售价定为16.5元/千克,日销售量为875千克
②依题意得:12天内售完9000千克柑橘
故日销售量至少为:(千克)
∴
解得
设利润为w元,则
∴对称轴为
∴当时w随x的增大而增大
∴当时销售利润最大,最大利润为(元)
【点睛】
此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.
相关试卷
这是一份2021学年第24章 圆综合与测试同步测试题,共29页。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了下列事件是随机事件的是,下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共18页。试卷主要包含了下列事件中,属于不可能事件的是,下列说法中,正确的是,若a是从“等内容,欢迎下载使用。