年终活动
搜索
    上传资料 赚现金

    难点解析沪科版九年级数学下册第26章概率初步同步测评试题(名师精选)

    难点解析沪科版九年级数学下册第26章概率初步同步测评试题(名师精选)第1页
    难点解析沪科版九年级数学下册第26章概率初步同步测评试题(名师精选)第2页
    难点解析沪科版九年级数学下册第26章概率初步同步测评试题(名师精选)第3页
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第26章 概率初步综合与测试随堂练习题

    展开

    这是一份沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共20页。试卷主要包含了以下事件为随机事件的是等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是(      A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同2、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为(    A. B. C. D.3、下列事件中,属于必然事件的是(    A.任意购买一张电影票,座位号是奇数B.抛一枚硬币,正面朝上C.五个人分成四组,这四组中有一组必有2人D.打开电视,正在播放动画片4、关于“明天是晴天的概率为90%”,下列说法正确的是(    ).A.明天一定是晴天 B.明天一定不是晴天C.明天90%的地方是晴天 D.明天是晴天的可能性很大5、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为(    A. B. C. D.6、下列成语描述的事件为随机事件的是(  )A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升7、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为(    A. B. C. D.8、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是(    A. B. C. D.9、以下事件为随机事件的是(    A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是10、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是(    A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为___.2、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.3、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.4、如图,在3×3正方形网格中,AB在格点上,在网格的其它格点上任取一点C,能使△ABC为等腰三角形的概率是_____.5、从3,0,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)2、在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张.(1)求第二次取出的数字小于第一次取出的数字的概率.(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率.3、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数(成活数(成活率(移植棵数(成活数(成活率(50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是________,那么成活率是________(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________(3)若小王移植10000棵这种树苗,则可能成活________;(4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由.4、如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等(指针停在分割线上再转一次).(1)现随机转动转盘一次,停止后,指针指向1的概率为_______.(2)小明和小华利用这个转盘做游戏,若采用下列游规则:随机转动转盘两次、停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为对双方公平吗?请用列表或画树状图的方法说明理由.5、同时掷两枚质地均匀的骰子,两枚骰子分别记为第1枚和第2枚,下表列举出了所有可能出现的结果.第2枚第1枚1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1)由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性______(填“相等”或者“不相等”);(2)计算下列事件的概率:①两枚骰子的点数相同;②至少有一枚骰子的点数为3. -参考答案-一、单选题1、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A. 数字之和是0的概率为0,故该项符合题意;    B. 数字之和是正数的概率为,故该项不符合题意; C. 卡片上面的数字之和是负数的概率为,故该项不符合题意; D. 数字之和分别是负数、0、正数的概率不相同,故该项不符合题意; 故选:A【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.2、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.3、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意购买一张电影票,座位号是奇数是随机事件;B、抛一枚硬币,正面朝上是随机事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、打开电视,正在播放动画片是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.【详解】解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,故选:D.【点睛】题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.5、B【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【详解】解:列表得: 锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,P(一次打开锁)故选:B.【点睛】本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.6、C【分析】根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.【详解】解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;D、旭日东升,是必然会发生的,不是随机事件,不符合题意;故选C.【点睛】本题主要考查了随机事件的定义,熟知定义是解题的关键.7、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,P(摸到红球)=故选:A【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.8、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA,进行计算即可.【详解】解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,∴抽到每个球的可能性相同,∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是P(白球)故选:D.【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.9、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是是必然事件;故选:B【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、【分析】将红球的个数除以球的总个数即可得.【详解】解:根据题意,摸到的不是红球的概率为答案为:【点睛】本题考查了概率公式:随机事件A的概率PA)=事件A可能出现的结果数除以所有可能出现的结果数.2、【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.【详解】解:观察转盘灰色区域的面积与总面积的比值为故答案为:【点睛】本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.3、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.4、【分析】分三种情况:①点A为顶点;②点B为顶点;③点C为顶点;得到能使△ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解.【详解】如图,∵AB∴①若ABAC,符合要求的有3个点;②若ABBC,符合要求的有2个点;③若ACBC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是故答案为:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=5、【分析】由正比例函数的图象及其性质可判断3,0,五个数均符合,由一元二次方程根的判别式可判断出只有三个数符合题意,故概率为【详解】的图象经过一、三象限3,0,这五个数均符合关于x的方程其中解得时关于x的方程有实数根三个数符合题意P=故答案为:【点睛】本题考查了正比例函数图象及其性质和一元二次方程根的判别式.当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定abc的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.当时,方程有两个相等的实数根,不能说方程只有一个根.三、解答题1、(1);(2)见解析,【分析】(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.【详解】解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:∵共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,∴第二次取出的数字小于第一次取出的数字的概率是(2)设计:在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?∵共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,∴两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比.3、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数×成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案.(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,∴成活率故答案为:6335;0.905;(2)解:∵大量重复试验下,频率的稳定值即为概率值,∴可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵.此结论不正确,理由如下:∵概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,∴若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4、(1)(2)不公平,理由见解析【分析】(1)利用概率公式直接进行计算即可;(2)先画树状图,得到所有的等可能的结果数与积为偶数的结果数,再利用概率公式计算即可.(1)解:随机转动转盘一次,停止后,指针指向1的概率为: 故答案为:(2)解:如图,画树状图如下:由树状图可得:所有的等可能的结果数有个,积为偶数的结果数有个,所以小明胜的概率为: 小华胜的概率为: 所以游戏不公平.【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“画树状图的方法”是解本题的关键.5、(1)相等;(2)①;②【分析】(1)根据两枚骰子质地均匀,可知同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等;(2)①先根据表格得到两枚骰子的点数相同(记为事件A)的结果有6种,然后利用概率公式求解即可;②先根据表格得到至少有一枚骰子的点数为3(记为事件B)的结果有11种,然后利用概率公式求解即可.【详解】解:(1)∵两枚骰子质地均匀,∴同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等; 故答案为:相等;(2)①由表格可知两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),②由表格可知至少有一枚骰子的点数为3(记为事件B)的结果有11种,【点睛】本题主要考查了列表法求解概率,熟知列表法求解概率是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法正确的是.,下列说法正确的是,下列说法正确的有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步练习题,共20页。试卷主要包含了下列四幅图的质地大小,下列事件是必然事件的是等内容,欢迎下载使用。

    数学第26章 概率初步综合与测试课时训练:

    这是一份数学第26章 概率初步综合与测试课时训练,共22页。试卷主要包含了下列说法中正确的是,以下事件为随机事件的是,下列四幅图的质地大小等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map