沪科版九年级下册第26章 概率初步综合与测试课后作业题
展开
这是一份沪科版九年级下册第26章 概率初步综合与测试课后作业题,共18页。试卷主要包含了下列事件,你认为是必然事件的是,下列说法中正确的是,下列说法正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).A. B. C. D.2、下列事件是必然事件的是( )A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天3、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A.1 B. C. D.4、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大C.甲、乙获胜的可能性一样大 D.无法判断5、成语“守株待兔”描述的这个事件是( )A.必然事件 B.确定事件 C.不可能事件 D.随机事件6、下列事件,你认为是必然事件的是( )A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的7、下列说法中正确的是( )A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件8、下列说法正确的是( )A.同时投掷两枚相同的硬币,出现“一正一反”的概率是B.事件“两个正数相加,和是正数”是必然事件C.数2和8的比例中项是4D.同一张底片洗出来的两张照片是位似图形9、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )A.①②③ B.①③② C.③②① D.③①②10、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.2、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是________. 3、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.4、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:实验的稻种数n∕粒800800800800800发芽的稻种数m∕粒763757761760758发芽的频率0.9540.9460.9510.9500.948在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.5、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).三、解答题(5小题,每小题10分,共计50分)1、一只不透明的袋子中装有三个质地、大小都相同的小球,球面上分别标有数字-1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点M的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点M的纵坐标.(1)用树状图或列表等方法,列出所有可能出现的结果;(2)求事件A“点M落在第二象限”的概率P(A).2、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.3、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.4、盒中有1枚黑棋和3白棋,这些棋除颜色外无其他差别,某同学一次摸出两枚棋,请通过列表或树状图计算这两枚棋颜色不同的概率.5、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了如下的条形统计图和扇形统计图.请根据图中信息,回答下列问题: (1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;(2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;(3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率. -参考答案-一、单选题1、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下: 跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.2、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a2≥0,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.3、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.4、A【分析】根据事件发生的可能性即可判断.【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当∴甲获胜的可能性比乙大故选A.【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.5、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:“守株待兔”是随机事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;.故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.8、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是±4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B.【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.9、D【分析】必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.【详解】解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;③中面朝上的点数大于是一定会发生的,故为必然事件.依据要求进行排序为③①②故选D.【点睛】本题考察了事件.解题的关键在于区分各种事件的概念.10、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.二、填空题1、【分析】由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.【详解】解:P(红球)=故答案为:【点睛】本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.2、【分析】从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得.【详解】解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,则如果从中随机摸出一个,那么摸到黄球的可能性大小是,故答案为:.【点睛】本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.3、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是.故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、0.95 1.9 【分析】(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.【详解】解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).故答案为:(1)0.95;(2)1.9.【点睛】本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.5、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.【详解】解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=而 ∴找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.三、解答题1、(1)树状图见解析,(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2);(2)【分析】(1)根据题意画出树状图,并列出所有可能出现的结果;(2)根据(1)的树状图求事件A“点M落在第二象限”的概率P(A)【详解】解:(1)可画树状图如下:由此可知点M的坐标有以下六种等可能性:(-1,2)、(-1,3)、(2,-1)、(2,3)、(3,-1)、(3,2). (2)上面六种等可能性中第二象限的点M为(-1,2)、(-1,3)两种,∴事件A“点M落在第二象限”的概率为P(A)=【点睛】本题考查了树状图法求概率,第二象限点的坐标特征,掌握树状图法求概率是解题的关键.2、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为.【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.3、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案.【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,∴甲赢的概率为,乙赢的概率为,∴这个游戏不公平.【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法.4、【分析】用列表法列举所有可能出现的结果,再找出所求事件可能出现的结果,由即可求出相应概率.【详解】如表所示由表可知共有12种情况,其中摸出两枚棋子的颜色不同的情况有6种故P=.【点睛】当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法,列表法的一般步骤:把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格,把所求事件发生的可能结果都找出来代入计算公式:,当事件的发生只经过两个步骤时,一般用列表法就能将所有的可能结果列举出来,当经过多个步骤时,表格就不够清晰了,而画树状图法的适用面更广,特别是多个步骤时,层次清楚,一目了然.5、(1)50,,图见解析(2)36(3)【分析】(1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形统计图,再求出D选项所占的百分数即可求得D选项所对应的圆心角;(2)根据家长总人数乘以D选项所占的百分数即可求解;(3)根据(1)中求出的D选项人数可求得男女家长数,再用列表法求解即可.(1)解:家长总人数:11÷22%=50(人),B选项人数:50×40%=20(人),D选项人数:50-11-20-15=4(人),D选项所占的百分数为4÷50=8%,D选项所对的圆心角为360°×8%=28.8°,答:一共调查了50名家长,选项圆心角为,补全条形统计图如图:(2)解:450×8%=36(人),答:估计九年级“不知晓五项管理”举措的家长有36人;(3)解:D选项共4人,则男女家长各2人,从中抽取2人,画树状图为:由图可知,一共有12种等可能的结果,其中都是男家长的有2种,∴抽取家长都是男家长的概率是.【点睛】本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、用列表或画树状图法求概率,能从条形统计图和扇形统计图中获取有效信息是解答的关键.
相关试卷
这是一份数学沪科版第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列说法正确的是,不透明的布袋内装有形状等内容,欢迎下载使用。
这是一份2020-2021学年第26章 概率初步综合与测试测试题,共18页。试卷主要包含了一个不透明的口袋里有红,下列事件,你认为是必然事件的是等内容,欢迎下载使用。
这是一份沪科版第26章 概率初步综合与测试习题,共22页。试卷主要包含了下列说法不正确的是,任意掷一枚骰子,下列事件中,在一个不透明的盒子中装有红球等内容,欢迎下载使用。