终身会员
搜索
    上传资料 赚现金

    难点详解沪科版九年级数学下册第26章概率初步章节训练试题(含答案及详细解析)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第26章概率初步章节训练试题(含答案及详细解析)第1页
    难点详解沪科版九年级数学下册第26章概率初步章节训练试题(含答案及详细解析)第2页
    难点详解沪科版九年级数学下册第26章概率初步章节训练试题(含答案及详细解析)第3页
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题

    展开

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题,共20页。试卷主要包含了下列说法中,正确的是,下列事件中是必然事件的是,下列事件中,属于不可能事件的是等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是(    ).

    A. B. C. D.

    2、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为(  )

    A. B. C. D.

    3、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是(   

    A. B. C. D.

    4、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是(   

    A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1

    C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于7

    5、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是(  )

    A. B. C. D.

    6、下列说法中,正确的是(   

    A.“射击运动员射击一次,命中靶心”是必然事件

    B.事件发生的可能性越大,它的概率越接近1

    C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖

    D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得

    7、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是(   

    A.无放回的从中连续摸出三个红球是随机事件

    B.从中摸出一个棕色球是随机事件

    C.无放回的从中连续摸出两个白球是不可能事件

    D.从中摸出一个红色球是必然事件

    8、下列事件中是必然事件的是(   

    A.小菊上学一定乘坐公共汽车

    B.某种彩票中奖率为1%,买10000张该种票一定会中奖

    C.一年中,大、小月份数刚好一样多

    D.将豆油滴入水中,豆油会浮在水面上

    9、下列事件中,属于不可能事件的是(   

    A.射击运动员射击一次,命中靶心

    B.从一个只装有白球和红球的袋中摸球,摸出黄球

    C.班里的两名同学,他们的生日是同一天

    D.经过红绿灯路口,遇到绿灯

    10、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是(   

    A.(1)(2)都是随机事件 B.(1)(2)都是必然事件

    C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______

    2、农科院新培育出AB两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:

    种子数量

    100

    200

    500

    1000

    2000

    A

    出芽种子数

    96

    165

    491

    984

    1965

    发芽率

    0.96

    0.83

    0.98

    0.98

    0.98

    B

    出芽种子数

    96

    192

    486

    977

    1946

    发芽率

    0.96

    0.96

    0.97

    0.98

    0.97

    下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子;②当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98.其中不合理的是 _____.(只填序号)

    3、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.

    4、大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为 _____.

    5、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:

    种子个数

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    发芽种子个数

    94

    188

    281

    349

    435

    531

    625

    719

    812

    902

    发芽种子频率

    (结果保留两位小数)

    0.94

    0.94

    0.94

    0.87

    0.87

    0.89

    0.89

    0.90

    0.90

    0.90

    根据频率的稳定性,估计这种植物种子发芽的概率是______.

    三、解答题(5小题,每小题10分,共计50分)

    1、防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.

    (1)小明从乙测温通道通过的概率是________;

    (2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.

    2、口袋里有除颜色外其它都相同的6个红球和4个白球.

    (1)先从袋子里取出m)个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.

    ①如果事件A是必然事件,请直接写出m的值.

    ②如果事件A是随机事件,请直接写出m的值.

    (2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.

    3、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:

    活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为

    活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为

    请你猜想的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.

    4、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:

    八年级2班参加球类活动人数统计表

    项目

    篮球

    足球

    乒乓球

    排球

    羽毛球

    人数

    a

    6

    5

    7

    6

    根据图中提供的信息,解答下列问题:

    (1)a        b       

    (2)该校八年级学生共有600人,则该年级参加足球活动的人数约        人;

    (3)该班参加乒乓球活动的5位同学中,有3位男同学(ABC)和2位女同学(DE),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

    5、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

    (1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;

    (2)这个游戏公平吗?若不公平,请你设计一个公平的游戏规则.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    先找出滑冰项目图案的张数,再根据概率公式即可得出答案.

    【详解】

    解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,

    ∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是

    故选:B.

    【点睛】

    本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.

    2、D

    【分析】

    在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.

    【详解】

    解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,

    红球有:个,

    则随机摸出一个红球的概率是:

    故选:D.

    【点睛】

    本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.

    3、C

    【分析】

    根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.

    【详解】

    解:列树状图如下所示:

       

    根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,

    ∴恰好有两次正面朝上的事件概率是:

    故选C.

    【点睛】

    本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.

    4、C

    【分析】

    将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.

    【详解】

    解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;

    B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;

    C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;

    D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;

    故选:C

    【点睛】

    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    5、B

    【分析】

    根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.

    【详解】

    解:随机掷一枚质地均匀的硬币三次,

    根据树状图可知至少有两次正面朝上的事件次数为:4,

    总的情况为8次,

    故至少有两次正面朝上的事件概率是:

    故选:B.

    【点睛】

    本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.

    6、B

    【分析】

    根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.

    【详解】

    解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;

    事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;

    某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;

    图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.

    故选择B.

    【点睛】

    本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.

    7、A

    【分析】

    随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.

    【详解】

    无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;

    一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;

    无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;

    一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.

    故选A.

    【点睛】

    本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.

    8、D

    【分析】

    必然事件就是一定发生的事件,根据定义即可解答.

    【详解】

    解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;

    B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;

    C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;

    D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.

    故选:D.

    【点睛】

    用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    9、B

    【分析】

    根据不可能事件的意义,结合具体的问题情境进行判断即可.

    【详解】

    解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;

    B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;

    C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;

    D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;

    故选:B.

    【点睛】

    本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.

    10、D

    【分析】

    必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.

    【详解】

    解:事件(1):购买1张福利彩票,中奖,是随机事件,

    事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,

    故选D

    【点睛】

    本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.

    二、填空题

    1、0.9

    【分析】

    根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.

    【详解】

    解:由题意可得:长方形的面积为

    ∵骰子落在会徽图案上的频率稳定在0.15左右,

    ∴会徽图案的面积为:

    故答案为:

    【点睛】

    题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.

    2、②

    【分析】

    根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.

    【详解】

    ①由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以①中的说法是合理的.

    ②由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以②中的说法不合理;

    ③由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以③中的说法是合理的;

    故答案为:②

    【点睛】

    本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.

    3、

    【分析】

    根据简单概率公式进行计算即可.

    【详解】

    解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.

    则指针对准红色区域的可能性大小是

    故答案为:

    【点睛】

    本题考查了几何概率,立即题意是解题的关键.

    4、

    【分析】

    根据几何概率的求解方法:用黑色区域的面积除以正方形面积即可得到答案.

    【详解】

    解:由题意得:点落入黑色部分的概率为

    故答案为:

    【点睛】

    本题主要考查了几何概率,解题的关键在于能够熟练掌握几何概率的求解方法.

    5、0.1

    【分析】

    大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.

    【详解】

    观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,

    故“发芽种子”的概率估计值为0.9.

    ∴这种植物种子不发芽的概率是0.1.

    故答案为:0.1.

    【点睛】

    本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.

    三、解答题

    1、(1);(2)

    【分析】

    (1)根据题意直接利用概率公式求解即可得出答案;

    (2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得.

    【详解】

    解:(1)小明从乙测温通道通过的概率是

    故答案为:

    (2)列表格如下:

     

    甲,甲

    乙,甲

    丙,甲

    甲,乙

    乙,乙

    丙,乙

    C

    甲,丙

    乙,丙

    丙,C

    由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,

    所以小明和小丽从同一个测温通道通过的概率为.

    【点睛】

    本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.

    2、(1)①4;②1或2或3;(2)

    【分析】

    (1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;

    ② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;

    (2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.

    【详解】

    解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,

    ② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,

    ∴此时有白球 1个或2个或3个,

    m的值为1或2或3;

    (2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:

    【点睛】

    本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.

    3、,验证过程见解析

    【分析】

    首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.

    【详解】

    活动1:

     

    红球1

    红球2

    白球

    红球1

     

    (红1,红2)

    (红1,白)

    红球2

    (红2,红1)

     

    (红2,白)

    白球

    (白,红1)

    (白,红2)

     

    ∵共有6种等可能的结果,摸到两个红球的有2种情况,

    ∴摸出的两个球都是红球的概率记为

    活动2:

     

    红球1

    红球2

    白球

    红球1

    (红1,红1)

    (红1,红2)

    (红1,白)

    红球2

    (红2,红1)

    (红2,红2)

    (红2,白)

    白球

    (白,红1)

    (白,红2)

    (白,白)

    ∵共有9种等可能的结果,摸到两个红球的有4种情况,

    ∴摸出的两个球都是红球的概率记为

    【点睛】

    此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.

    4、(1)16,17.5;(2)90;(3)

    【分析】

    (1)首先求得总人数,然后根据百分比的定义求解;

    (2)利用总数乘以对应的百分比即可求解;

    (3)利用列举法,根据概率公式即可求解.

    【详解】

    解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,

    b=17.5,

    故答案为:16,17.5;

    (2)600×[6÷(5÷12.5%)]=90(人),

    故答案为:90;

    (3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,

    ∴则P(恰好选到一男一女)=

    【点睛】

    本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.

    5、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.

    【分析】

    (1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;

    (2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可.

    【详解】

    解:(1)根据题意画图如下:

    由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,

    则小李获胜的概率是,小王获胜的概率是

    (2)由(1)知,小李获胜的概率是,小王获胜的概率是

    所以游戏不公平;

    游戏规则:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

    【点睛】

    本题考查的是游戏公平性的判断.注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.

     

    相关试卷

    2021学年第24章 圆综合与测试精练:

    这是一份2021学年第24章 圆综合与测试精练,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。

    初中数学沪科版九年级下册第26章 概率初步综合与测试测试题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试测试题,共19页。试卷主要包含了不透明的布袋内装有形状,下列说法正确的是,下列事件中是必然事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map