终身会员
搜索
    上传资料 赚现金

    难点详解沪科版九年级数学下册第26章概率初步专项测评试题(名师精选)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第26章概率初步专项测评试题(名师精选)第1页
    难点详解沪科版九年级数学下册第26章概率初步专项测评试题(名师精选)第2页
    难点详解沪科版九年级数学下册第26章概率初步专项测评试题(名师精选)第3页
    还剩16页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试习题

    展开

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法正确的是.,下列说法正确的是,下列说法正确的有等内容,欢迎下载使用。


    沪科版九年级数学下册第26章概率初步专项测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是(   

    A.(1)(2)都是随机事件 B.(1)(2)都是必然事件

    C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件

    2、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?

    下面分别是甲、乙两名同学的答案:

    游戏次数

    100

    200

    400

    1000

    频率

    0.32

    0.34

    0.325

    0.332

    甲:掷一枚质地均匀的骰子,向上的点数与4相差1;

    乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”(  )

    A.甲正确,乙错误 B.甲错误,乙正确

    C.甲、乙均正确 D.甲、乙均错误

    3、下列判断正确的是(   

    A.明天太阳从东方升起是随机事件;

    B.购买一张彩票中奖是必然事件;

    C.掷一枚骰子,向上一面的点数是6是不可能事件;

    D.任意画一个三角形,其内角和是360°是不可能事件;

    4、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:

    摸球的次数

    200

    300

    400

    1000

    1600

    2000

    摸到黑球的频数

    142

    186

    260

    668

    1064

    1333

    摸到黑球的频率

    0.7100

    0.6200

    0.6500

    0.6680

    0.6650

    0.6665

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有(  )个.

    A.4 B.3 C.2 D.1

    5、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为(   

    A. B. C. D.

    6、下列说法正确的是(    ).

    A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件

    B.“打开电视机,正在播放乒乓球比赛”是必然事件

    C.“面积相等的两个三角形全等”是不可能事件

    D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次

    7、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是(  

    A. B. C. D.

    8、下列说法正确的是(   

    A.“经过有交通信号的路口遇到红灯”是必然事件

    B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次

    C.“心想事成,万事如意”描述的事件是随机事件

    D.天气预报显示明天为阴天,那么明天一定不会下雨

    9、下列说法正确的有(   

    ①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.

    ②无理数之间.

    ③从这五个数中随机抽取一个数,抽到无理数的概率是

    ④一元二次方程有两个不相等的实数根.

    ⑤若边形的内角和是外角和的倍,则它是八边形.

    A. B. C. D.

    10、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率______.

    2、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.

    3、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 ___.

    4、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.

    5、现有5张除数字外完全相同的卡片,上面分别写有,0,1,2这五个数,将卡片背面朝上洗匀,从中任意抽取两张,将卡片上的数字记为

    (1)用列表法或画树状图法列举的所有可能结果.

    (2)若将mn的值代入二次函数,求二次函数顶点在坐标轴上的概率.

    三、解答题(5小题,每小题10分,共计50分)

    1、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.

    (1)求两次摸出的球的标号相同的概率;

    (2)求两次摸出的球的标号的和等于4的概率.

    2、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:

    活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为

    活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为

    请你猜想的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.

    3、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:

    (1)甲、乙都选择(窗花剪纸)课程的概率;

    (2)甲、乙选择同一门课程的概率.

    4、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.

    5、长沙作为新晋的网红城市,旅游业快速发展,岳麓区共有ABCDE等网红景点,区旅游部门统计绘制出2021年“国庆”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:

    (1)2021年“国庆”长假期间,岳麓区旅游景点共接待游客        万人.并补全条形统计图;

    (2)在等可能性的情况下,甲、乙两个旅行团在ABCD四个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.

    【详解】

    解:事件(1):购买1张福利彩票,中奖,是随机事件,

    事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,

    故选D

    【点睛】

    本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.

    2、C

    【分析】

    由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.

    【详解】

    由表可知该种结果出现的概率约为

    ∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6

    ∴向上的点数与4相差1有3、5

    ∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为

    ∴甲的答案正确

    又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为

    ∴乙的答案正确

    综上所述甲、乙答案均正确.

    故选C

    【点睛】

    本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.

    3、D

    【详解】

    解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;

    B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;

    C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;

    D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;

    故选:D

    【点睛】

    本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.

    4、C

    【分析】

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.

    【详解】

    解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,

    估计摸出黑球的概率为0.667,

    则摸出绿球的概率为

    袋子中球的总个数为

    由此估出黑球个数为

    故选:C.

    【点睛】

    本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

    5、A

    【分析】

    用红球的个数除以所有球的个数即可求得抽到红球的概率.

    【详解】

    解:∵共有5个球,其中红球有2个,

    P(摸到红球)=

    故选:A

    【点睛】

    此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.

    6、A

    【分析】

    根据必然事件、不可能事件、随机事件的概念可区别各类事件.

    【详解】

    解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;

    B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;

    C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;

    D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;

    故选:A.

    【点睛】

    本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    7、B

    【分析】

    列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.

    【详解】

    解:列表如下:

     

    1

    2

    1

    2

    3

    2

    3

    4

    由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,

    所以两次摸出的小球的标号之和是3的概率为

    故选:B.

    【点睛】

    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式计算事件A或事件B的概率.

    8、C

    【详解】

    解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;

    B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;

    C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;

    D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;

    故选:C

    【点睛】

    本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.

    9、A

    【分析】

    根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.

    【详解】

    解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;

    无理数之间,正确,故本选项符合题意;

    这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;

    因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;

    边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;

    正确的有个;

    故选:

    【点睛】

    此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.

    10、B

    【分析】

    根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.

    【详解】

    解:列表得:

     

    锁1

    锁2

    钥匙1

    (锁1,钥匙1)

    (锁2,钥匙1)

    钥匙2

    (锁1,钥匙2)

    (锁2,钥匙2)

    钥匙3

    (锁1,钥匙3)

    (锁2,钥匙3)

    由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,

    P(一次打开锁)

    故选:B.

    【点睛】

    本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.

    二、填空题

    1、

    【分析】

    利用概率公式直接求解即可.

    【详解】

    解:∵袋中有形状材料均相同的白球2个, 红球4个,共6个球,

    ∴任意摸一个球是红球的概率

    故答案为:

    【点睛】

    本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=

    2、

    【分析】

    根据题意,分时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.

    【详解】

    解:当时,该方程不是一元二次方程,

    时,

    解得

    时,关于x的一元二次方程有实数解

    随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是

    故答案为:

    【点睛】

    本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.

    3、

    【分析】

    根据概率的公式,即可求解

    【详解】

    解:根据题意得:这个球是白球的概率为

    故答案为:

    【点睛】

    本题考查了概率公式:熟练掌握随机事件A的概率PA)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.

    4、

    【分析】

    先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.

    【详解】

    解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是

    设口袋中大约有x个白球,则

    解得x=20,

    经检验x=20是原方程的解,

    估计口袋中白球的个数约为20个.

    故答案为:20.

    【点睛】

    本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.

    5、(1)见解析;(2)

    【分析】

    (1)画出树状图即可;

    (2)共有20种可能的结果,其中二次函数顶点在坐标轴上的结果有8种,再由概率公式求解即可.

    【详解】

    (1)画树状图得

    共有20种可能的结果;

    (2)从,0,1,2这五个数中任取两数mn,共有20种可能,

    其中二次函数顶点在坐标轴上(记为事件A)的有8种,

    所以

    【点睛】

    本题考查了用树状图法求概率以及二次函数的性质.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.

    三、解答题

    1、(1);(2)

    【分析】

    (1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;

    (2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可.

    【详解】

    解:(1)列树状图如下所示:

    由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,

    (两次摸出的球的标号相同)

    (2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,

    (两次摸出的球的标号的和等于4)

    【点睛】

    本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.

    2、,验证过程见解析

    【分析】

    首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.

    【详解】

    活动1:

     

    红球1

    红球2

    白球

    红球1

     

    (红1,红2)

    (红1,白)

    红球2

    (红2,红1)

     

    (红2,白)

    白球

    (白,红1)

    (白,红2)

     

    ∵共有6种等可能的结果,摸到两个红球的有2种情况,

    ∴摸出的两个球都是红球的概率记为

    活动2:

     

    红球1

    红球2

    白球

    红球1

    (红1,红1)

    (红1,红2)

    (红1,白)

    红球2

    (红2,红1)

    (红2,红2)

    (红2,白)

    白球

    (白,红1)

    (白,红2)

    (白,白)

    ∵共有9种等可能的结果,摸到两个红球的有4种情况,

    ∴摸出的两个球都是红球的概率记为

    【点睛】

    此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.

    3、(1) ;(2)

    【分析】

    (1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;

    (2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.

    【详解】

    解:(1)由题意列表,

     

    A

    B

    C

    D

    A

    A,A

    A,B

    A,C

    A,D

    B

    B,A

    B,B

    B,C

    B,D

    C

    C,A

    C,B

    C,C

    C,D

    D

    D,A

    D,B

    D,C

    D,D

    由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,

    所以甲、乙都选择(窗花剪纸)课程的概率为.

    (2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,

    所以甲、乙选择同一门课程的概率为.

    【点睛】

    本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.

    4、

    【分析】

    根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.

    【详解】

    解:由题意可得,所有等可能的情况如下:

              

       白色1

    白色2

    红色

    白色1

     

    (白色2,白色1)

    (红色,白色1)

    白色2

    (白色1,白色2)

     

    (红色,白色2)

    红色

    (白色1,红色)

    (白色2,红色)

     

    由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,

    ∴一次摸出两个球“都是白球”的概率=

    【点睛】

    本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    5、(1)50,见解析;(2),见解析

    【分析】

    (1)由A类景区有15万人,占比30%,从而可得游客的总人数,再由总人数乘以B类的占比得到B类的人数,再补全图形即可;

    (2)先画树状图得到选择的所有的等可能的结果数16种,同时得到选择同一景区的等可能的结果数有4种,再利用概率公式计算即可.

    【详解】

    解:(1)岳麓区旅游景点共接待游客15÷30%=50(万人),

    B景点的人数为50×24%=12(万人),

    补全条形图如下:

    (2)画树状图如图所示:

    ∵共有16种等可能出现的结果,其中甲、乙两个旅行团在ABCD四个景点中选择去同一景点的结果有4种,

    ∴甲、乙两个旅行团在ABCD四个景点中选择去同一景点的概率=

    【点睛】

    本题考查的是从条形图与扇形图中获取信息,补全条形图,利用列表法或画树状图求简单随机事件的概率,熟练的掌握统计与概率中的基础知识是解题的关键.

     

    相关试卷

    数学沪科版第24章 圆综合与测试习题:

    这是一份数学沪科版第24章 圆综合与测试习题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    2020-2021学年第26章 概率初步综合与测试课时作业:

    这是一份2020-2021学年第26章 概率初步综合与测试课时作业,共18页。试卷主要包含了把6张大小,有两个事件,事件等内容,欢迎下载使用。

    初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题,共19页。试卷主要包含了一个不透明的口袋里有红,下列说法正确的是,任意掷一枚骰子,下列事件中,以下事件为随机事件的是,下列事件是随机事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map