![难点解析沪科版九年级数学下册第26章概率初步专题练习试卷(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12691958/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第26章概率初步专题练习试卷(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12691958/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第26章概率初步专题练习试卷(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12691958/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题,共20页。试卷主要包含了有两个事件,事件等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )
A.无放回的从中连续摸出三个红球是随机事件
B.从中摸出一个棕色球是随机事件
C.无放回的从中连续摸出两个白球是不可能事件
D.从中摸出一个红色球是必然事件
2、下列说法正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上
C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖
D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近
3、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
4、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )
A. B. C. D.
5、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )
A. B. C. D.
6、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
7、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )
A.一班抽到的序号小于6 B.一班抽到的序号为9
C.一班抽到的序号大于0 D.一班抽到的序号为7
8、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
9、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
10、下表记录了一名球员在罚球线上投篮的结果:
投篮次数 | 50 | 100 | 150 | 200 | 250 | 400 | 500 | 800 |
投中次数 | 28 | 63 | 87 | 122 | 148 | 242 | 301 | 480 |
投中频率 | 0.560 | 0.630 | 0.580 | 0.610 | 0.592 | 0.605 | 0.602 | 0.600 |
根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )
A.0.560 B.0.580 C.0.600 D.0.620
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 ___.
2、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.
3、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
4、图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为6m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为 _____m2.
5、学校决定从甲、乙、丙三名学生中随机抽取两名介绍学习经验,则同时抽到乙、丙两名同学的概率为_____.
三、解答题(5小题,每小题10分,共计50分)
1、我市举行了某学科实验操作考试,有A,B,C,D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.
(1)小厉参加实验D考试的概率是______;
(2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
2、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
3、在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线.
(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率.
4、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:
抽盲盒总数 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
频数 | 130 | 273 | 414 | 566 | 695 | 843 |
频率 | 0.260 | 0.273 | 0.276 | 0.283 | 0.278 | 0.281 |
(1)估计从这批盲盒中任意抽取一个是玩具B的概率是 ;(结果保留小数点后两位)
(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.
5、邮票素有“国家名片”之称,方寸之间,包罗万象.为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:
某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品.
(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是___________;
(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率.
-参考答案-
一、单选题
1、A
【分析】
随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.
【详解】
无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;
一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;
无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;
一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.
故选A.
【点睛】
本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.
2、D
【分析】
根据概率的意义去判断即可.
【详解】
∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,
∴A说法错误;
∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,
∴B说法错误;
∵“彩票中奖的概率是1%”表示中奖的可能性是1%,
∴C说法错误;
∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,
∴D说法正确;
故选D.
【点睛】
本题考查了概率的意义,正确理解概率的意义是解题的关键.
3、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
4、C
【分析】
根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.
【详解】
解:列树状图如下所示:
根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,
∴恰好有两次正面朝上的事件概率是:.
故选C.
【点睛】
本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.
5、B
【分析】
直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.
【详解】
解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;
故取得的小正方体恰有三个面被涂色.的概率为.
故选:B.
【点睛】
此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.
6、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
7、C
【分析】
必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.
【详解】
解:A中一班抽到的序号小于是随机事件,故不符合要求;
B中一班抽到的序号为是不可能事件,故不符合要求;
C中一班抽到的序号大于是必然事件,故符合要求;
D中一班抽到的序号为是随机事件,故不符合要求;
故选C.
【点睛】
本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.
8、B
【分析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;
B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;
C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;
D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.
故选:B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
9、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
10、C
【分析】
根据频率估计概率的方法并结合表格数据即可解答.
【详解】
解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,
∴这名球员在罚球线上投篮一次,投中的概率为0.600.
故选:C.
【点睛】
本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.
二、填空题
1、
【分析】
根据概率的公式,即可求解
【详解】
解:根据题意得:这个球是白球的概率为
故答案为:
【点睛】
本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
2、
【分析】
由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.
【详解】
解:P(红球)=
故答案为:
【点睛】
本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.
3、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
4、8.4
【分析】
首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.
【详解】
解:假设不规则图案面积为x m2,
由已知得:长方形面积为24m2,
根据几何概率公式小球落在不规则图案的概率为:,
当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,
综上有:=0.35,
解得x=8.4.
估计不规则图案的面积大约为8.4 m2.
故答案为:8.4.
【点睛】
本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.
5、
【分析】
画树状图,共有6种等可能的结果,同时抽到乙、丙两名同学的结果有2个,再由概率公式解题.
【详解】
解:画树状图如图:
共有6个等可能的结果,同时抽到乙、丙两名同学的结果有2个,
∴同时抽到乙、丙两名同学的概率为,
故答案为:.
【点睛】
本题考查列树状图表示概率,是重要考点,掌握相关知识是解题关键.
三、解答题
1、
(1)
(2)
【分析】
(1)根据概率公式即可得;
(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.
(1)
解:小厉参加实验考试的概率是,
故答案为:;
(2)
解:列表如下:
| ||||
所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,,,,4种情况,
所以小王、小张抽到同一个实验的概率为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
2、
(1);
(2)两次都是红球的概率为
【分析】
(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;
(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.
(1)
解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,
∴,
其中是黄球的可能有一种,
∴,
故答案为:;;
(2)
四个球简写为“红1,红2,黄,蓝”,列表法为:
| 红1 | 红2 | 黄 | 蓝 |
红1 | (红1,红1) | (红1,红2) | (红1,黄) | (红1,蓝) |
红2 | (红2,红1) | (红2,红2) | (红2,黄) | (红2,蓝) |
黄 | (黄,红1) | (黄,红2) | (黄,黄) | (黄,蓝) |
蓝 | (蓝,红1) | (蓝,红2) | (蓝,黄) | (蓝,蓝) |
共有16种等可能的结果数,其中两次都是红球的有4种结果,
所以两次都是红球的概率为:.
【点睛】
题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键.
3、(1)6;(2)
【分析】
(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;
(2)根据网格的特点判断直角三角形,根据列表法求得概率
【详解】
(1)如图,
从点出发,只能向右或向下,先向右的路线为:,,
先向下的路线为:,,
共6条路线
故答案为:6
(2)列表如下,
| A | B | C |
D、E | ADE | BDE | CDE |
D、F | ADF | BDF | CDF |
E、F | AEF | BEF | CEF |
根据列表可知共有9种等可能情况,只有CDE,CDF, CEF是直角三角形
则所画三角形是直角三角形的概率为
【点睛】
本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键.
4、
(1)0.28;
(2)
【分析】
(1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;
(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.
(1)
解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,
故答案为0.28.
(2)
列表为:
| A | B | C | D |
A | -- | BA | CA | DA |
B | AB | -- | CB | DB |
C | AC | BC | -- | DC |
D | AD | BD | CD | -- |
由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=.
【点睛】
本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
5、(1);(2)见解析,
【分析】
(1)利用简单概率公式计算即可;
(2)利用画树状图或列表法,计算.
【详解】
(1)∵事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,
∴恰好抽到“冬季两项”的概率是,
故答案为:;
(2)解:直接使用图中的序号代表四枚邮票.
方法一:由题意画出树状图
由树状图可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.
∴.
方法二:由题意列表
第二枚 第一枚 | ① | ② | ③ | ④ |
① |
| ①② | ①③ | ①④ |
② | ②① |
| ②③ | ②④ |
③ | ③① | ③② |
| ③④ |
④ | ④① | ④② | ④③ |
|
由表可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.
∴ .
【点睛】
本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了一个不透明的口袋里有红,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份数学九年级下册第26章 概率初步综合与测试同步测试题,共19页。试卷主要包含了下列说法正确的是.,下列事件是必然事件的是,下列判断正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件是必然发生的事件是,下列事件中是不可能事件的是,下列说法正确的是等内容,欢迎下载使用。