![难点详解沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12691966/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12691966/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解沪科版九年级数学下册第26章概率初步专题练习试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12691966/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了下列事件是随机事件的是,下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( )
累计抽测的学生数n | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
体质健康合格的学生数与n的比值 | 0.85 | 0.9 | 0.93 | 0. 91 | 0.89 | 0.9 | 0.91 | 0.91 | 0.92 | 0.92 |
A.0.92 B.0.905 C.0.03 D.0.9
2、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
A. B. C. D.1
3、下列说法中正确的是( )
A.“打开电视,正在播放《新闻联播》”是必然事件
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖
C.想了解某市城镇居民人均年收入水平,宜采用抽样调查
D.我区未来三天内肯定下雪
4、下列事件是随机事件的是( )
A.2021年全年有402天
B.4年后数学课代表会考上清华大学
C.刚出生的婴儿体重50公斤
D.袋中只有10个红球,任意摸出一个球是红球
5、下列事件中,是必然事件的是( )
A.刚到车站,恰好有车进站
B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球
C.打开九年级上册数学教材,恰好是概率初步的内容
D.任意画一个三角形,其外角和是360°
6、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
7、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).
A. B. C. D.
8、下列事件是必然事件的是( )
A.明天一定是晴天 B.购买一张彩票中奖
C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同
9、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
10、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )
A.24 B.18 C.16 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校开展了远程网络教学,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论.小宁和小娟都参加了远程网络教学活动,请求出某一时间内两人恰好选择同一种学习方式的概率为______.
2、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.
3、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
4、在如图所示的电路图中,当随机闭合开关K1、K2、K3中的两个时,能够让灯泡发光的概率为________.
5、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.
三、解答题(5小题,每小题10分,共计50分)
1、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.
(1)甲从中随机选取A套餐的概率是 ;
(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.
2、2021年教育部出台了关于中小学生作业、睡眠、手机、读物、体质五个方面的管理,简称“五项管理”,这是推进立德树人,促进学生全面发展的重大举措.某班为培养学生的阅读习惯,利用课外时间开展以“走近名著”为主题的读书活动,有6名学生喜欢四大名著,其中2人(记为,)喜欢《西游记),2人(记为,)喜欢《红楼梦》,1人(记为C)喜欢《水浒传》,1人(记为D)喜欢《三国演义》.
(1)如果从这6名学生中随机抽取1人担任读书活动宣传员,求抽到的学生恰好喜欢《西游记》的概率.
(2)如果从这6名学生中随机抽取2人担任读书活动宣传员,求抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率.
3、新年即将来临,利群商场为了吸引顾客,特别设计了一种促销活动:在一个不透明的箱子里放有4个除数字外完全相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于40元的概率.
4、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表:
箱数 | 6 | 2 | 5 | 4 | 2 | 4 |
每箱中失活菌苗株数 | 0 | 1 | 2 | 3 | 5 | 6 |
(1)抽检的20箱平均每箱有多少株失活菌苗?
(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.
5、不透明的盒子中有四个形状、大小、质地完全相同的小球,标号分别为1, 2,3, 4.
(1)从盒子中随机摸出一个小球,标号是奇数的概率是 ;
(2)先从盒子中随机摸出一个小球,放回后摇匀,再随机摸出一个小球,记两次摸出球的标号之和为m,则m可能取2~8中的任何一个整数,分析哪个整数出现的可能性最大.
-参考答案-
一、单选题
1、A
【分析】
根据频数估计概率可直接进行求解.
【详解】
解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;
故选A.
【点睛】
本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键.
2、C
【分析】
根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
,,,
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
3、C
【分析】
根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;
B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;
C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;
D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.
4、B
【分析】
随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.
【详解】
解:A、2021年全年有402天,是不可能事件,不符合题意;
B、4年后数学课代表会考上清华大学,是随机事件,符合题意;
C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;
D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,
故选:B.
【点睛】
本题考查随机事件,理解随机事件的概念是解答的关键.
5、D
【分析】
根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.
【详解】
解:A、刚到车站,恰好有车进站是随机事件;
B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;
C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;
D、任意画一个三角形,其外角和是360°是必然事件;
故选D.
【点睛】
本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.
6、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
7、B
【分析】
根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.
【详解】
解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:
| 跳 | 坐 | 握 |
跳 | (跳,跳) | (跳,坐) | (跳,握) |
坐 | (坐,跳) | (坐,坐) | (坐,握) |
握 | (握,跳) | (握,坐) | (握,握) |
由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,
则两人抽到跳远的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.
8、D
【分析】
必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.
【详解】
解:A、B、C选项中的事件都是随机事件,不符合要求;
D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;
故选D.
【点睛】
本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.
9、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
10、A
【分析】
根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.
【详解】
解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.40,
∴口袋中白色球的个数可能是60×0.40=24个.
故选A.
【点睛】
本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.
二、填空题
1、##
【分析】
用分别表示:在线阅读、在线听课、在线答疑、在线讨论,再利用列表的方法求解学习方式中所有的等可能的结果数,再确定两人选择相同的学习方式的结果数,再利用概率公式可得答案.
【详解】
解:用分别表示:在线阅读、在线听课、在线答疑、在线讨论,
列表如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由表格信息可得:所有的等可能的结果数有16种,而两人选择相同的学习分式的可能的结果数有4种,
所以:某一时间内两人恰好选择同一种学习方式的概率为:
故答案为:
【点睛】
本题考查的是利用画树状图或列表的方法求解等可能事件的概率,熟练的列表得到所有的等可能的结果数是解本题的关键.
2、8
【分析】
首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.
【详解】
解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,
∴摸出红球的概率为0.2,
由题意,,
解得:,
经检验,是原方程的解,且符合题意,
故答案为:8.
【点睛】
本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.
3、0.9
【分析】
根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.
【详解】
解:由题意可得:长方形的面积为,
∵骰子落在会徽图案上的频率稳定在0.15左右,
∴会徽图案的面积为:,
故答案为:.
【点睛】
题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.
4、
【分析】
根据题意画出树状图,由树状图求得所有可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.
【详解】
解:设K1、K2、K3中分别用1、2、3表示,
画树状图得:
∵共有6种等可能的结果,能够让灯泡发光的有4种结果,
∴能够让灯泡发光的概率为:,
故答案为:.
【点睛】
本题主要考查了概率问题,根据题意画出树状图求得所有可能的结果与能够让灯泡发光的情况是关键.
5、
【分析】
可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.
【详解】
解:∵共摸球4000次,其中800次摸到黑球,
∴从中随机摸出一个球是黑球的概率为,
故答案为:
【点睛】
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
三、解答题
1、(1);(2).
【分析】
(1)直接根据概率公式求解即可;
(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.
【详解】
解:(1)由题意,
∵推出A,B,C,D四种礼盒套餐,
∴甲从中随机选取A套餐的概率是;
故答案为:.
(2)根据题意,画树状图为:
共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,
∴甲、乙2人选取相同套餐的概率为:.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
2、(1)抽到的学生恰好喜欢《西游记》的概率为;(2)抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.
【分析】
(1)根据题意及概率公式可直接进行求解;
(2)根据题意列出表格,然后问题可求解.
【详解】
解:(1)由题意得:抽到的学生恰好喜欢《西游记》的概率为;
(2)由题意可得列表如下:
| C | D | ||||
/ | √ | √ | √ | √ | √ | |
√ | / | √ | √ | √ | √ | |
√ | √ | / | √ | √ | √ | |
√ | √ | √ | / | √ | √ | |
C | √ | √ | √ | √ | / | √ |
D | √ | √ | √ | √ | √ | / |
∴由表格可知共有30种等可能的情况,其中恰好1人喜欢《西游记》1人喜欢《红楼梦》的可能性有8种,
∴抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.
【点睛】
本题主要考查概率,熟练掌握利用列表法求解概率是解题的关键.
3、(1)10;(2)列表见解析,
【分析】
(1)根据小球上标的金额数找出最小的两个数,然后相加即可得出答案;
(2)根据题意列出图表得出所有等可能的情况数和该顾客所获得购物券的金额高于40元的情况数,然后根据概率公式即可得出答案.
【详解】
解:(1)根据题意知,该顾客可能摸出金额最小的两个球是“0元”、“10元”,故至少可得到10元购物券,
故答案为:10;
(2)根据题意列表如下:
| 0 | 10 | 20 | 30 |
0 | \ | (0,10) | (0,20) | (0,30) |
10 | (10,0) | \ | (10,20) | (10,30) |
20 | (20,0) | (20,10) | \ | (20,30) |
30 | (30,0) | (30,10) | (30,20) | \ |
从上表可以看出,共有12种等可能结果,其中该顾客所获得购物券的金额不低于40元的结果有4种结果,
所以该顾客所获得购物券的金额不低于40元的概率为=.
【点睛】
本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.
4、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为
【分析】
(1)根据题意及表格可直接进行求解;
(2)由题意知当每箱中失活菌苗株数为40×10%=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解.
【详解】
解:(1)由表格得:
(株);
答:抽检的20箱平均每箱有2.9株失活菌苗;
(2)由题意得:40×10%=4株,
∴当每箱中失活菌苗株数为4株时,则需喷洒营养剂,
∴,
即事件A的概率为.
【点睛】
本题主要考查概率,熟练掌握概率的求解是解题的关键.
5、(1);(2)出现5的可能性最大.
【分析】
(1)利用列举法求解即可;
(2)先列表找到所有的等可能性的结果数,然后找到每个整数出现的结果数,由此求解即可.
【详解】
解:(1)从四个小球中随机摸出一个球摸出的小球的编号可以为1、2、3、4一共四种等可能性的结果数,其中摸到标号为奇数的有:摸到标号为1的和摸到标号为2的一共两种,
∴从盒子中随机摸出一个小球,标号是奇数的概率是;
(2)列表如下:
| 第一次 | ||||
1 | 2 | 3 | 4 | ||
第 二 次 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | |
3 | 4 | 5 | 6 | 7 | |
4 | 5 | 6 | 7 | 8 |
由表格可知一共有16种等可能性的结果数,其中两次标号之和为2的有1种,两次标号之和为3的有2种,两次标号之和为4的有3种,两次标号之和为5的有4种,两次标号之和为6的有3种,两次标号之和为7的有2种,两次标号之和为8的有1种,
∴出现5的可能性最大.
【点睛】
本题主要考查了列举法求解概率,树状图法或列举法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步训练题,共21页。试卷主要包含了下列事件是随机事件的是,下列说法正确的是,下列说法错误的是等内容,欢迎下载使用。
这是一份数学沪科版第26章 概率初步综合与测试课堂检测,共18页。试卷主要包含了以下事件为随机事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。