初中数学沪科版九年级下册第26章 概率初步综合与测试习题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共20页。试卷主要包含了下列事件是随机事件的是,下列说法中正确的是,下列事件中,属于不可能事件的是,下列事件中,属于必然事件的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
2、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
3、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )
A.12 B.15 C.18 D.23
4、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
5、下列说法中正确的是( )
A.一组数据2、3、3、5、5、6,这组数据的众数是3
B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1
C.为了解长沙市区全年水质情况,适合采用全面调查
D.画出一个三角形,其内角和是180°为必然事件
6、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
7、下列事件是随机事件的是( )
A.2021年全年有402天
B.4年后数学课代表会考上清华大学
C.刚出生的婴儿体重50公斤
D.袋中只有10个红球,任意摸出一个球是红球
8、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
9、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
10、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )
A.有道理,池中大概有1200尾鱼 B.无道理
C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、从﹣2,﹣1,1,0四个数中,随机抽取两个数相乘,积为0的概率是 _____.
2、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
3、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.
4、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:
实验的稻种数n∕粒 | 800 | 800 | 800 | 800 | 800 |
发芽的稻种数m∕粒 | 763 | 757 | 761 | 760 | 758 |
发芽的频率 | 0.954 | 0.946 | 0.951 | 0.950 | 0.948 |
在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.
5、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.
三、解答题(5小题,每小题10分,共计50分)
1、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子.
(1)“小明抽到面值为80分的邮票”是______事件(填“随机”“不可能”或“必然”);
(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率.
2、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是非负数的概率为______;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
3、某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:
请结合图中所给信息,解答下列问题
(1)本次调查的学生共有 人;
(2)扇形统计图中表示D选项的扇形圆心角的度数是 ,并把条形统计图补充完整;
(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
4、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同).现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率.
5、为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
组别 | 分数段(分) | 频数 | 频率 |
A组 | 60≤x<70 | 30 | 0.1 |
B组 | 70≤x<80 | 90 | n |
C组 | 80≤x<90 | m | 0.4 |
D组 | 90≤x<100 | 60 | 0.2 |
(1)在表中:m= ,n= ;
(2)补全频数分布直方图;
(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;
(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.
-参考答案-
一、单选题
1、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
2、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
3、A
【分析】
由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.
【详解】
解:设盒子中红球的个数x,根据题意,得:
解得x=12,
所以盒子中红球的个数是12,
故选:A.
【点睛】
本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.
4、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
5、D
【分析】
根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.
【详解】
A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;
B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;
D. 画出一个三角形,其内角和是180°为必然事件,正确;
故选D.
【点睛】
此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.
6、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
7、B
【分析】
随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.
【详解】
解:A、2021年全年有402天,是不可能事件,不符合题意;
B、4年后数学课代表会考上清华大学,是随机事件,符合题意;
C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;
D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,
故选:B.
【点睛】
本题考查随机事件,理解随机事件的概念是解答的关键.
8、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
10、A
【分析】
设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.
【详解】
解:设池中大概有鱼x尾,由题意得:,
解得:,
经检验:是原方程的解;
∴池塘主的做法有道理,池中大概有1200尾鱼;
故选A.
【点睛】
本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.
二、填空题
1、
【分析】
画树状图,共有12种等可能的结果,积为0的结果有6种,再由概率公式求解即可.
【详解】
解:画树状图如下:
共有12种等可能的结果,积为0的结果有6种,
∴积为0的概率为,
故答案为:.
【点睛】
此题考查的是用树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
2、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
3、
【分析】
由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.
【详解】
解:P(红球)=
故答案为:
【点睛】
本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.
4、0.95 1.9
【分析】
(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;
(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.
【详解】
解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;
(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).
故答案为:(1)0.95;(2)1.9.
【点睛】
本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.
5、
【分析】
从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.
【详解】
从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1绿1,红1绿2,红2红3,
红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况:
红1绿1,红1绿2,红2绿1.
故所求的概率为P=;
故答案为:.
【点睛】
本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.
三、解答题
1、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等).
【分析】
(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;
(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可.
【详解】
解:(1)∵三张邮票里面没有80分的邮票
∴“小明抽到面值为80分的邮票”是不可能事件,
故答案为:不可能;
(2)设A、B、C分别代表120分、150分、50分的邮票,
列树状图如下所示:
由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种
∴P(两个盒子里邮票的面值恰好相等).
【点睛】
本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键.
2、
(1)
(2)此游戏公平,理由见解析.
【分析】
(1)利用概率公式求解即可;
(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.
(1)
解:第一次抽取的卡片上数字是非负数的概率为,
故答案为:.
(2)
解:列表如下:
| 0 | 1 | -2 | 3 |
0 |
| 1 | -2 | 3 |
1 | -1 |
| -3 | 2 |
-2 | 2 | 3 |
| 5 |
3 | -3 | -2 | -5 |
|
由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,
所以甲获胜的概率=乙获胜的概率==,
∴此游戏公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
3、(1)100;(2)144°,见解析;(3)见解析,
【分析】
(1)根据器乐的占比和人数进行求解即可;
(2)用360°×(D选项的人数)÷总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;
(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可.
【详解】
解:(1)由题意得:本次调查的学生共有:30÷30%=100(人);
故答案为:100;
(2)表示D选项的扇形圆心角的度数是,
喜欢B类项目的人数有:100-30-10-40=20(人),
补全条形统计图如图1所示:
故答案为:144°;
(3)画树形图如图2所示:
共有12种情况,被选取的两人恰好是甲和乙有2种情况,
则被选取的两人恰好是甲和乙的概率是.
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图.
4、两次摸出的都是红球的概率为.
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
【详解】
解:根据题意,画树状图如下:
共有12种结果,并且每种结果出现的可能性相同,符合题意的结果有2种,
所以(两次摸出的都是红球).
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
5、(1)120,0.3;(2)见解析;(3)C;(4) .
【分析】
(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;
(2)根据(1)中所求结果即可补全频数分布直方图;
(3)根据中位数的定义即可求解;
(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.
【详解】
解:(1)∵本次调查的总人数为30÷0.1=300(人),
∴m=300×0.4=120,n=90÷300=0.3,
故答案为:120,0.3;
(2)补全频数分布直方图如下:
(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,
而第150、151个数据的平均数均落在C组,
∴据此推断他的成绩在C组,
故答案为:C;
(4)画树状图如下:
由树状图可知,共有12种等可能结果,其中抽中A、C两组同学的有2种结果,
∴抽中A、C两组同学的概率为.
【点睛】
本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息.
相关试卷
这是一份数学沪科版第24章 圆综合与测试习题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共19页。试卷主要包含了下列说法正确的是.,下列说法正确的是,下列说法正确的有等内容,欢迎下载使用。
这是一份2021学年第26章 概率初步综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。