![2021-2022学年京改版七年级数学下册第八章因式分解难点解析试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12692007/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第八章因式分解难点解析试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12692007/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第八章因式分解难点解析试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12692007/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第八章 因式分解综合与测试课时训练
展开这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了已知c<a<b<0,若M=|a等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
2、下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
3、下列各式中,能用完全平方公式分解因式的是( )
A. B.
C. D.
4、已知a2-2a-1=0,则a4-2a3-2a+1等于( )
A.0 B.1 C.2 D.3
5、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
6、下列等式中,从左到右的变形是因式分解的是( )
A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9
C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)
7、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )
A.﹣6 B.±6 C.12 D.±12
8、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
9、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
10、已知x,y满足,则的值为( )
A.—5 B.4 C.5 D.25
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
2、分解因式:3a(x﹣y)+2b(y﹣x)=___.
3、下列因式分解正确的是________(填序号)
①;②;③;④
4、因式分解:(x2+y2)2﹣4x2y2=________
5、分解因式:2x2-4x=_____.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1)
(2)
2、因式分解:ab4﹣4ab3+4ab2.
3、分解因式:2a2-8ab+8b2.
4、因式分解
(1)
(2)
5、因式分解.
(1)
(2)
(3)
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
2、B
【解析】
【分析】
根据因式分解的定义直接判断即可.
【详解】
解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B.等式从左到右的变形属于因式分解,故本选项符合题意;
C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;
D.属于整式乘法,不属于因式分解,故本选项不符合题意;
故答案为:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、D
【解析】
【分析】
根据完全平方公式法分解因式,即可求解.
【详解】
解:A、不能用完全平方公式因式分解,故本选项不符合题意;
B、不能用完全平方公式因式分解,故本选项不符合题意;
C、不能用完全平方公式因式分解,故本选项不符合题意;
D、能用完全平方公式因式分解,故本选项符合题意;
故选:D
【点睛】
本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.
4、C
【解析】
【分析】
由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.
【详解】
解:∵a2﹣2a﹣1=0,
∴a2﹣2a=1,
∴a4﹣2a3﹣2a+1
=a2(a2﹣2a)﹣2a+1
=a2﹣2a+1
=1+1
=2.
故选:C.
【点睛】
此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.
5、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.
6、D
【解析】
【分析】
根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.
【详解】
解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;
B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;
C、6a2+1=a2(6+)不是因式分解,不符合题意;
D、a2-9=(a+3)(a3)属于因式分解,符合题意;
故选:D
【点睛】
本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.
7、D
【解析】
【分析】
利用完全平方公式的结构特征判断即可求出a的值.
【详解】
解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,
∴ax=±12x.
故选:D.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
8、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
9、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
10、A
【解析】
【分析】
根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.
【详解】
解:.
故选:A.
【点睛】
本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.
二、填空题
1、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
2、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3a(x﹣y)+2b(y﹣x)=
故答案为:
【点睛】
本题考查了提公因式法因式分解,正确的计算是解题的关键.
3、①④##④①
【解析】
【分析】
根据因式分解的提公因式法及公式法对各式子计算即可得.
【详解】
解:①,正确;
②,计算错误;
③,计算错误;
④,正确;
故答案为:①④.
【点睛】
题目主要考查因式分解的方法:提公因式法和公式法,熟练掌握两种方法是解题关键.
4、(x-y)2(x+y)2
【解析】
【分析】
根据平方差公式和完全平方公式因式分解即可;
【详解】
原式,
;
故答案是:.
【点睛】
本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.
5、##
【解析】
【分析】
根据提公因式法因式分解即可
【详解】
解:2x2-4x=
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.
三、解答题
1、(1);(2).
【解析】
【分析】
(1)先提公因式,然后利用平方差公式因式分解即可;
(2)利用提公因式法分解因式即可.
【详解】
(1)解:原式
;
(2)解:原式
.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
2、
【解析】
【分析】
先提取公因式,再利用公式法分解即可;
【详解】
原式;
【点睛】
本题主要考查了利用提取公因式法和公式法进行因式分解,准确运用公式是解题的关键.
3、2(a-2b)2
【解析】
【分析】
先提取公因式2,再利用完全平方公式因式分解.
【详解】
解:2a2-8ab+8b2
=2(a2-4ab+4b2)
=2(a-2b)2.
【点睛】
本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
4、(1);(2)
【解析】
【分析】
(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;
(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.
5、(1);(2);(3)
【解析】
【分析】
(1)由题意直接根据完全平方差公式即可进行因式分解;
(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;
(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.
【详解】
解:(1)
(2)
(3)
【点睛】
本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了把分解因式的结果是.,下列运算错误的是,若x2+ax+9=等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份七年级下册第八章 因式分解综合与测试课时作业,共15页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。