初中数学沪科版九年级下册第24章 圆综合与测试课后作业题
展开这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共28页。
沪科版九年级数学下册第24章圆定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )
A.10 B.6 C.6 D.12
3、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
4、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
A.5 B. C. D.
5、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
6、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
7、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
8、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
A.3 B.2 C.1 D.
9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
10、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.
2、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.
3、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
4、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.
5、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
(1)求证:AC为⊙O的切线;
(2)若⊙O半径为2,OD=4.求线段AD的长.
2、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
(2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.
3、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
4、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.
(1)求的度数;
(2)若,且,求DF的长.
5、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)
-参考答案-
一、单选题
1、B
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
2、D
【分析】
连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
【详解】
解:连接OB,OC,
∵∠BAC=30°,
∴∠BOC=60°.
∵OB=OC,BC=6,
∴△OBC是等边三角形,
∴OB=BC=6.
∴⊙O的直径等于12.
故选:D.
【点睛】
本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
3、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、D
【分析】
连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
【详解】
解:连接OF,OE,OG,
∵AB、BC、CD分别与相切,
∴,,,且,
∴OB平分,OC平分,
∴,,
∵,
∴,
∴,
∴,
,
∴,
∴,
故选:D.
【点睛】
题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
5、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
6、B
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.是轴对称图形,不是中心对称图形,故不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
8、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
9、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
10、C
【分析】
据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
【详解】
解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
故选:C.
【点睛】
本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
二、填空题
1、35°
【分析】
利用圆周角定理求出所求角度数即可.
【详解】
解:与都对,且,
,
故答案为:.
【点睛】
本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
2、22020
【分析】
根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
【详解】
解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
∴OA0=1,
∴点A1 的横坐标是 1=20,
∴OA1=2OA0=2,
∵∠A2A1O=90°,∠A2OA1=60°,
∴OA2=2OA1=4,
∴点A2 的横坐标是- OA2=-2=-21,
依次进行下去,Rt△OA2A3,Rt△OA3A4…,
同理可得:
点A3 的横坐标是﹣2OA2=﹣8=﹣23,
点A4 的横坐标是﹣8=﹣23,
点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
点A7 的横坐标是64=26,
…
发现规律,6次一循环,
即
,
,
2021÷6=336……5
则点A2021的横坐标与的坐标规律一致是 22020.
故答案为:22020.
【点睛】
本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
3、或
【分析】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
【详解】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
如图所示:
∵,
∴,,
∵点A绕点G顺时针旋转90°后得到点,
∴,,
∴,
∵轴,轴,
∴,
∴,
∴,
在与中,
,
∴,
∴,,
∴,
∴,
在中,由勾股定理得:,
解得:或,
∴或.
故答案为:,.
【点睛】
本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
4、2
【分析】
连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.
【详解】
解:连接OC,
∵OA=OC,∠A=30°,
∴∠COH=2∠A=60°,
∵弦CD⊥AB于H,
∴∠OHC=90°,
∴∠OCH=30°,
∵OH=1,
∴OC=2OH=2,
故答案为:2.
【点睛】
本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.
5、
【分析】
如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.
【详解】
解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,
∵四边形BCDE是正方形,
∴∠BCD=∠CBE=90°,CD=BC=BE=DE,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,
∴△OCD≌△OBE(SAS),
∴OE=OD,
根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,
∵∠MCB=∠MOB=×90°=45°,
∴∠DCM=∠BCM=45°,
∵四边形BCDE是正方形,
∴C、M、E共线,∠DEM=∠BEM,
在△EMD和△EMB中,
,
∴△MED≌△MEB(SAS),
∴DM=BM===2(cm),
∴OD的最大值=2+2,即OE的最大值=2+2;
故答案为:(2+2)cm.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.
三、解答题
1、(1)见解析;(2)4
【分析】
(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
【详解】
解:(1)连接OB,
∵AB是⊙O的切线,
∴OB⊥AB,
即∠ABO=90°,
∵BC是弦,OA⊥BC,
∴CE=BE,
∴AC=AB,
在△AOB和△AOC中,
,
∴△AOB≌△AOC(SSS),
∴∠ACO=∠ABO=90°,
即AC⊥OC,
∴AC是⊙O的切线;
(2)在Rt△BOD中,由勾股定理得,
BD==2,
∵sinD==,⊙O半径为2,OD=4.
∴=,
解得AC=2,
∴AD=BD+AB=4.
【点睛】
本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
2、(1)作图见解析;(2)
【分析】
(1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
【详解】
解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;
(2)如图所示,连接CD和OD,
由题意,AD为⊙O的切线,
∵OC⊥AC,且OC为半径,
∴AC为⊙O的切线,
∴AC=AD,
∴∠ACD=∠ADC,
∵CD=BD,
∴∠B=∠DCB,
∵∠ADC=∠B+∠BCD,
∴∠ACD=∠ADC=2∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
即:3∠DCB=90°,
∴∠DCB=30°,
∵OC=OD,
∴∠DCB=∠ODC=30°,
∴∠COD=180°-2×30°=120°,
∵∠DCB=∠B=30°,
∴在Rt△ABC中,∠BAC=60°,
∵AO平分∠BAC,
∴∠CAO=∠DAO=30°,
∴在Rt△ACO中,,
∴.
【点睛】
本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.
3、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
【分析】
连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
【详解】
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上,
∴∠OAP=90°(直径所对的圆周角是直角),
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
同理可证直线PB是⊙O的切线,
故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.
4、(1)45°;(2)
【分析】
(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;
(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.
【详解】
解:(1)由旋转可知:
,,,,
∴,,.
由三角形内角和定理得,
∴点A,D,F,E共圆.
∴.
(2)连接EB,
∵,
∴.
∵,
∴.
又∵,,
∴.
∴,.
∴.
在中,,,,
∵,
∴.
【点睛】
本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.
5、见解析
【分析】
先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
【详解】
如图,直线AB就是所求作的,
(作法不唯一,作出一条即可,需要有作图痕迹)
【点睛】
本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试达标测试,共25页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。