终身会员
搜索
    上传资料 赚现金

    难点详解沪科版九年级数学下册第24章圆定向攻克试卷(精选含答案)

    立即下载
    加入资料篮
    难点详解沪科版九年级数学下册第24章圆定向攻克试卷(精选含答案)第1页
    难点详解沪科版九年级数学下册第24章圆定向攻克试卷(精选含答案)第2页
    难点详解沪科版九年级数学下册第24章圆定向攻克试卷(精选含答案)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共28页。


    沪科版九年级数学下册第24章圆定向攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).

    A.20° B.25° C.30° D.40°

    2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    3、下列四个图案中,是中心对称图形但不是轴对称图形的是(   

    A. B. C. D.

    4、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    5、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(   

    A.105° B.120° C.135° D.150°

    6、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. 

    C.  D.

    7、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(   

    A.相交 B.相切

    C.相离 D.不确定

    8、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(  

    A.3 B.2 C.1 D.

    9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(   

    A.50° B.70° C.110° D.120°

    10、点P(-3,1)关于原点对称的点的坐标是(   

    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    2、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作RtOA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 RtOA2A3RtOA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

    3、将点x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.

    4、如图所示,AB是⊙O的直径,弦CDABH,∠A=30°,OH=1,则⊙O的半径是______.

    5、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC

    (1)求证:AC为⊙O的切线;

    (2)若⊙O半径为2,OD=4.求线段AD的长.

    2、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D

    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);

    (2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.

    3、下面是“过圆外一点作圆的切线”的尺规作图过程.

    已知:⊙O和⊙O外一点P

    求作:过点P的⊙O的切线.作法:如图,

    (1)连接OP

    (2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于MN两点;

    (3)作直线MN,交OP于点C

    (4)以点C为圆心,CO的长为半径作圆,交⊙OAB两点;

    (5)作直线PAPB.直线PAPB即为所求作⊙O的切线

    完成如下证明:

    证明:连接OAOB

    OP是⊙C直径,点A在⊙C

    ∴∠OAP=90°(___________)(填推理的依据).

    OAAP

    又∵点A在⊙O上,

    ∴直线PA是⊙O的切线(___________)(填推理的依据).

    同理可证直线PB是⊙O的切线.

    4、如图,在中,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F

    (1)求的度数;

    (2)若,且,求DF的长.

    5、如图,点A外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    2、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    3、D

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是轴对称图形,是中心对称图形,故此选项不符合题意;

    D、不是轴对称图形,是中心对称图形,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    4、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    5、B

    【分析】

    由题意易得,然后根据三角形外角的性质可求解.

    【详解】

    解:由旋转的性质可得:

    故选B.

    【点睛】

    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.

    6、B

    【详解】

    解:A.是轴对称图形,不是中心对称图形,故不符合题意;

    B.既是轴对称图形,又是中心对称图形,故符合题意;

    C.不是轴对称图形,是中心对称图形,故不符合题意;

    D.是轴对称图形,不是中心对称图形,故不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    7、B

    【分析】

    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系

    【详解】

    解:连接,

    ,点OAB中点.

    CO为⊙C的半径,

    的切线,

    CAB的位置关系是相切

    故选B

    【点睛】

    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.

    8、B

    【分析】

    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.

    【详解】

    解:连接OC,如图

    AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,

    故选:B

    【点睛】

    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出

    9、B

    【分析】

    根据旋转可得,得

    【详解】

    解:

    绕点逆时针旋转得到△,使点的对应点恰好落在边上,

    故选:B.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.

    10、C

    【分析】

    据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.

    【详解】

    解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).

    故选:C.

    【点睛】

    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.

    二、填空题

    1、35°

    【分析】

    利用圆周角定理求出所求角度数即可.

    【详解】

    解:都对,且

    故答案为:

    【点睛】

    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.

    2、22020

    【分析】

    根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.

    【详解】

    解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),

    OA0=1,

    ∴点A1 的横坐标是 1=20

    OA1=2OA0=2,

    ∵∠A2A1O=90°,∠A2OA1=60°,

    OA2=2OA1=4,

    ∴点A2 的横坐标是- OA2=-2=-21

     依次进行下去,Rt△OA2A3,Rt△OA3A4…,

    同理可得:

    A3 的横坐标是﹣2OA2=﹣8=﹣23

    A4 的横坐标是﹣8=﹣23

    A5 的横坐标是 OA5×2OA4=2OA3=4OA2=16=24

    A6 的横坐标是2OA5=2×2OA4=23OA3=64=26

    A7 的横坐标是64=26

    发现规律,6次一循环,

    2021÷6=336……5

    则点A2021的横坐标与的坐标规律一致是 22020

    故答案为:22020

    【点睛】

    本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n轴上,且坐标为

    3、

    【分析】

    设点G的坐标为,过点A轴交于点M,过点轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.

    【详解】

    设点G的坐标为,过点A轴交于点M,过点轴交于点N

    如图所示:

    ∵点A绕点G顺时针旋转90°后得到点

    轴,轴,

    中,

    中,由勾股定理得:

    解得:

    故答案为:

    【点睛】

    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.

    4、2

    【分析】

    连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.

    【详解】

    解:连接OC

    OA=OC,∠A=30°,

    ∴∠COH=2∠A=60°,

    ∵弦CDABH

    ∴∠OHC=90°,

    ∴∠OCH=30°,

    OH=1,

    OC=2OH=2,

    故答案为:2.

    【点睛】

    本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.

    5、

    【分析】

    如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM,通过△OCD≌△OBESAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MDBM.再利用勾股定理计算即可.

    【详解】

    解:如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM

    ∵四边形BCDE是正方形,

    ∴∠BCD=∠CBE=90°,CDBCBEDE

    OBOC

    ∴∠OCB=∠OBC

    ∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE

    ∴△OCD≌△OBESAS),

    OEOD

    根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,

    ∵∠MCBMOB×90°=45°,

    ∴∠DCM=∠BCM=45°,

    ∵四边形BCDE是正方形,

    CME共线,∠DEM=∠BEM

    在△EMD和△EMB中,

    ∴△MED≌△MEBSAS),

    DMBM=2(cm),

    OD的最大值=2+2,即OE的最大值=2+2;

    故答案为:(2+2)cm.

    【点睛】

    本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.

    三、解答题

    1、(1)见解析;(2)4

    【分析】

    (1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;

    (2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案

    【详解】

    解:(1)连接OB

    AB是⊙O的切线,

    OBAB

    即∠ABO=90°,

    BC是弦,OABC

    CEBE

    ACAB

    在△AOB和△AOC中,

    ∴△AOB≌△AOCSSS),

    ∴∠ACO=∠ABO=90°,

    ACOC

    AC是⊙O的切线;

    (2)在Rt△BOD中,由勾股定理得,

    BD=2

    ∵sinD,⊙O半径为2,OD=4.

    解得AC=2

    ADBD+AB=4

    【点睛】

    本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.

    2、(1)作图见解析;(2)

    【分析】

    (1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;

    (2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.

    【详解】

    解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CDOD

    由题意,AD为⊙O的切线,

    OCAC,且OC为半径,

    AC为⊙O的切线,

    AC=AD

    ∴∠ACD=∠ADC

    CD=BD

    ∴∠B=∠DCB

    ∵∠ADC=∠B+∠BCD

    ∴∠ACD=∠ADC=2∠DCB

    ∵∠ACB=90°,

    ∴∠ACD+∠DCB=90°,

    即:3∠DCB=90°,

    ∴∠DCB=30°,

    OC=OD

    ∴∠DCB=∠ODC=30°,

    ∴∠COD=180°-2×30°=120°,

    ∵∠DCB=∠B=30°,

    ∴在RtABC中,∠BAC=60°,

    AO平分∠BAC

    ∴∠CAO=∠DAO=30°,

    ∴在RtACO中,

    【点睛】

    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.

    3、直径所对的圆周角是直角    经过半径的外端并且垂直于这条半径的直线是圆的切线   

    【分析】

    连接OAOB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;

    【详解】

    证明:连接OAOB

    OP是⊙C直径,点A在⊙C上,

    ∴∠OAP=90°(直径所对的圆周角是直角),

    OAAP

    又∵点A在⊙O上,

    ∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),

    同理可证直线PB是⊙O的切线,

    故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.

    4、(1)45°;(2)

    【分析】

    (1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;

    (2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.

    【详解】

    解:(1)由旋转可知:

    由三角形内角和定理得

    ∴点ADFE共圆.

    (2)连接EB

    又∵

    中,

    【点睛】

    本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.

    5、见解析

    【分析】

    先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交点,然后作直线,则根据圆周角定理可得为所求.

    【详解】

    如图,直线AB就是所求作的,

    (作法不唯一,作出一条即可,需要有作图痕迹)

    【点睛】

    本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试达标测试:

    这是一份初中数学第24章 圆综合与测试达标测试,共25页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map