终身会员
搜索
    上传资料 赚现金

    难点解析沪科版九年级数学下册第24章圆综合测评试卷(精选含答案)

    立即下载
    加入资料篮
    难点解析沪科版九年级数学下册第24章圆综合测评试卷(精选含答案)第1页
    难点解析沪科版九年级数学下册第24章圆综合测评试卷(精选含答案)第2页
    难点解析沪科版九年级数学下册第24章圆综合测评试卷(精选含答案)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试课时训练

    展开

    这是一份2020-2021学年第24章 圆综合与测试课时训练,共28页。


    沪科版九年级数学下册第24章圆综合测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(     

    A.140° B.100° C.80° D.40°

    2、如图,在中,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(   

    A.3 B.4 C.5 D.6

    3、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(  

    A.  B. 

    C.  D.

    4、在半径为6cm的圆中,的圆心角所对弧的弧长是(   

    A.cm B.cm C.cm D.cm

    5、下列图形中,是中心对称图形也是轴对称图形的是(  )

    A. B. C. D.

    6、如图,在RtABC中,,点DE分别是ABAC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的(     

    A.①②③ B.①②④ C.①③④ D.②③④

    7、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻AB,在小路l上有一座亭子PAP分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻AB原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是(  

    A.20 m B.20m

    C.(20 - 20)m D.(40 - 20m

    8、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(   

    A.平移 B.翻折 C.旋转 D.以上三种都不对

    9、下列图形中,既是轴对称图形,又是中心对称图形的是(  )

    A. B. C. D.

    10、的边经过圆心与圆相切于点,若,则的大小等于(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,过⊙O外一点P,作射线PAPB分别切⊙O于点AB,点C在劣弧AB上,过点C作⊙O的切线分别与PAPB交于点DE.则______度.

    2、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.

    3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π

    4、如图,点D为边长是的等边△ABCAB左侧一动点,不与点AB重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.

    5、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△ABC′.则图中阴影部分的面积为_____.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,AB的直径,CD的一条弦,且于点E

    (1)求证:

    (2)若,求的半径.

    2、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF

    (1)若∠BAC=40°,求∠BAF的度数;

    (2)若AC=8,BC=6,求AF的长.

    3、如图,的两条切线,切点分别为,连接并延长交于点,过点的切线交的延长线于点于点

    (1)求证:四边形是矩形;

    (2)若,求的长..

    4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过ABC三点的抛物线上.

    (1)求抛物线的解析式;

    (2)求过ABC三点的圆的半径;

    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    5、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    ,进而求解的值.

    【详解】

    解:由题意知

    故选C.

    【点睛】

    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.

    2、A

    【分析】

    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.

    【详解】

    由旋转的性质得:

    是等边三角形,

    故选:A.

    【点睛】

    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.

    3、C

    【分析】

    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.

    【详解】

    解:A、不是中心对称图形,故A错误.

    B、不是中心对称图形,故B错误.

    C、是中心对称图形,故C正确.

    D、不是中心对称图形,故D错误.

    故选:C.

    【点睛】

    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.

    4、C

    【分析】

    直接根据题意及弧长公式可直接进行求解.

    【详解】

    解:由题意得:的圆心角所对弧的弧长是

    故选C.

    【点睛】

    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.

    5、C

    【分析】

    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.

    【详解】

    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;

    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;

    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.

    故选:C

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    6、B

    【分析】

    根据,点DE分别是ABAC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AOOPAB=AC=6,∠BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为L可判断④点P运动的路径长为正确即可.

    【详解】

    解:∵,点DE分别是ABAC的中点.

    ∴∠DAE=90°,AD=AE=

    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,

    ∴∠DAB=∠EAC,

    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),

    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,

    ∵△AEC≌△ADB,

    ∴∠DBA=∠ECA,

    ∴∠PBA+∠P=∠ECP+∠BAC

    ∴∠P=∠BAC=90°,

    CP为⊙A的切线,

    AECP

    ∴∠DPE=∠PEA=∠DAE=90°,

    ∴四边形DAEP为矩形,

    AD=AE

    ∴四边形DAEP为正方形,

    PE=AE=3,

    在Rt△AEC中,CE=

    CP最大=PE+EC=3+

    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,

    BD=CE=

    在Rt△BPC中,BP最小=

    BP最短=BD-PD=-3,

    故③BP存在最小值为不正确;

    BC中点为O,连结AOOP

    AB=AC=6,∠BAC=90°,

    BP=CO=AO=

    AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=

    ∴∠ACE=30°,

    ∴∠AOP=2∠ACE=60°,

    ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=

    ∴∠ABD=30°,

    ∴∠AOP′=2∠ABD=60°,

    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为

    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,

    L

    故④点P运动的路径长为正确;

    正确的是①②④.

    故选B.

    【点睛】

    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.

    7、D

    【分析】

    根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当OP共线时,距离最短,计算即可.

    【详解】

    ∵人工湖面积尽量小,

    ∴圆以AB为直径构造,设圆心为O

    过点BBC,垂足为C

    AP分别位于B的西北方向和东北方向,

    ∴∠ABC=∠PBC=∠BOC=∠BPC=45°,

    OC=CB=CP=20,

    OP=40,OB==

    ∴最小的距离PE=PO-OE=40 - 20m),

    故选D

    【点睛】

    本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.

    8、C

    【详解】

    解:根据图形可知,这种图形的运动是旋转而得到的,

    故选:C.

    【点睛】

    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.

    9、C

    【详解】

    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;

    选项B不是轴对称图形,是中心对称图形,故B不符合题意;

    选项C既是轴对称图形,也是中心对称图形,故C符合题意;

    选项D是轴对称图形,不是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.

    10、A

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    二、填空题

    1、65

    【分析】

    连接OAOCOB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可.

    【详解】

    解:如图所示:连接OAOCOB

    PAPBDE与圆相切于点ABE

    DO平分EO平分

    故答案为:65.

    【点睛】

    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.

    2、60

    【分析】

    根据弧长公式求解即可.

    【详解】

    解:

    解得,

    故答案为:60.

    【点睛】

    本题考查了弧长公式,灵活应用弧长公式是解题的关键.

    3、

    【分析】

    先求出ABC坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.

    【详解】

    CCDOAD

    ∵一次函数的图象与x轴交于点A,与y轴交于点B

    ∴当时,B点坐标为(0,1)

    时,A点坐标为

    ∵作的外接圆

    ∴线段AB中点C的坐标为,

    ∴三角形BOC是等边三角形

    C的坐标为

    故答案为:

    【点睛】

    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.

    4、

    【分析】

    根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.

    【详解】

    解:根据题意作等边三角形的外接圆,

    D在运动过程中始终保持∠ADB=120°不变,

    在圆上运动,

    当点运动到的中点时,四边形ADBC的面积S的最大值,

    过点的垂线交于点,如图:

    中,

    解得:

    过点的垂线交于

    故答案是:

    【点睛】

    本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.

    5、

    【分析】

    利用勾股定理求出ACAB的长,根据阴影面积等于求出答案.

    【详解】

    解:由旋转得=∠BAC=30°,

    ∵∠ABC=90°,∠BAC=30°,BC=1,

    AC=2BC=2,AB=

    ∴阴影部分的面积=

    =,

    故答案为:

    【点睛】

    此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.

    三、解答题

    1、(1)见解析;(2)3

    【分析】

    (1)根据∠D=∠B,∠BCO=∠B,代换证明;

    (2)根据垂径定理,得CE=,利用勾股定理计算即可.

    【详解】

    (1)证明:

    OCOB

    ∴∠BCO=∠B

    ∴∠B=∠D

    ∴∠BCO=∠D

    (2)解:∵AB是⊙O的直径,且CDAB于点E

    CECD

    CD

    CE

    RtOCE中,

    OE=1,

    ∴⊙O的半径为3.

    【点睛】

    本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键.

    2、

    (1)65°

    (2)

    【分析】

    (1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;

    (2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.

    【小题1】

    解:在RtABC中,∠C=90°,∠BAC=40°,

    ∴∠ABC=50°,

    ∵将△ABC绕着点B逆时针旋转得到△FBE

    ∴∠EBF=∠ABC=50°,AB=BF

    ∴∠BAF=∠BFA=(180°-50°)=65°;

    【小题2】

    ∵∠C=90°,AC=8,BC=6,

    AB=10,

    ∵将△ABC绕着点B逆时针旋转得到△FBE

    BE=BC=6,EF=AC=8,

    AE=AB-BE=10-6=4,

    AF=

    【点睛】

    本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.

    3、(1)见详解;(2)7

    【分析】

    (1)根据切线的性质和矩形的判定定理即可得到结论;

    (2)根据切线长定理可得AB=ACBE=DE,再利用勾股定理即可求解.

    【详解】

    (1)证明:∵DE的两条切线,于点

    ∴∠EFC=∠EDC=∠FCD=90°,

    ∴四边形是矩形;

    (2)∵四边形是矩形,

    EF=CF=

    DE的两条切线,

    AB=ACBE=DE

    AB=AC=x,则AE=x+2,AF=x-2,

    中,

    解得:x=5,

    AC=5+2=7.

    【点睛】

    本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.

    4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).

    【分析】

    (1)3=OC=OA=3OB,故点ABC的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;

    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.

    【详解】

    解:(1)令x=0,则y=3,

    则点A的坐标为(3,0),

    根据题意得:OC=3=OA=3OB

    故点BC的坐标分别为:(-1,0)、(3,0),

    则抛物线的表达式为:y=ax+1)(x-3)=ax2-2x-3),

    把(3,0)代入得-3a=3,

    解得:a=-1,

    故抛物线的表达式为:y=-x2+2x+3;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),

    RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),

    则圆的半径为:

    (3)过点AC分别作直线AC的垂线,交抛物线分别为PP1

    设点P(x,-x2+2x+3),过点PPQ轴于点Q

    OA =OC,∠PAC=90°,

    ∴∠ACO=∠OAC=45°,

    ∵∠PAC=90°,

    ∴∠PAQ=45°,

    ∴△PAQ 是等腰直角三角形,

    PQ=AQ=x

    AQ+AO=x+3=-x2+2x+3,

    解得:(舍去),

    ∴点P(1,4);

    设点P1(m,-m2+2m+3),过点P1P1D轴于点D

    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,

    P1D=CD=m2-2m-3,DO=-m

    DO+OC= P1D,即-m+3= m2-2m-3,

    解得:(舍去),

    ∴点P(-2,-5);

    综上,点P(1,4)或(-2,-5).

    【点睛】

    本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.

    5、见解析

    【分析】

    由题意画图,再根据圆周角定理的推论即可得证结论.

    【详解】

    证明:根据题意作图如下:

    BD是圆周角ABC的角平分线,

    ∴∠ABD=∠CBD

    AD=CD

    【点睛】

    本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共36页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试随堂练习题:

    这是一份初中数学第24章 圆综合与测试随堂练习题,共29页。

    2021学年第24章 圆综合与测试课时训练:

    这是一份2021学年第24章 圆综合与测试课时训练,共27页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map