沪科版九年级下册第26章 概率初步综合与测试同步练习题
展开这是一份沪科版九年级下册第26章 概率初步综合与测试同步练习题,共21页。试卷主要包含了下列事件是随机事件的是,下列说法正确的是,有两个事件,事件等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中是必然事件的是( )
A.小菊上学一定乘坐公共汽车
B.某种彩票中奖率为1%,买10000张该种票一定会中奖
C.一年中,大、小月份数刚好一样多
D.将豆油滴入水中,豆油会浮在水面上
2、下列说法正确的是( )
A.同时投掷两枚相同的硬币,出现“一正一反”的概率是
B.事件“两个正数相加,和是正数”是必然事件
C.数2和8的比例中项是4
D.同一张底片洗出来的两张照片是位似图形
3、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
4、下列事件是随机事件的是( )
A.2021年全年有402天
B.4年后数学课代表会考上清华大学
C.刚出生的婴儿体重50公斤
D.袋中只有10个红球,任意摸出一个球是红球
5、下列成语描述的事件为随机事件的是( )
A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升
6、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是
B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球
C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同
D.在同一年出生的400个同学中至少会有2个同学的生日相同
7、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
8、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
9、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )
A. B. C. D.
10、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是( )
移植总数n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
成活数m | 369 | 1335 | 3203 | 6335 | 8073 | 12628 |
成活的频率 | 0.923 | 0.890 | 0.915 | 0.905 | 0.897 | 0.902 |
A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率
B.可以用试验次数累计最多时的频率作为概率的估计值
C.由此估计这种幼苗在此条件下成活的概率约为0.9
D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有五张正面分别标有数字,,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为________.
2、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.
3、用黑白两种全等的等腰直角三角形地砖铺成如图所示的方形地面,一只小虫在方形地面上任意爬行,并随机停留在方形地面某处,则小虫停留在黑色区域的概率是______.
4、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是______.
5、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
三、解答题(5小题,每小题10分,共计50分)
1、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).
甲种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 6 | 12 | 6 | |
乙种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 12 | 6 | 12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
2、已知关于x的一元二次方程x2+bx+c=0.
(1)c=2b﹣1时,求证:方程一定有两个实数根.
(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c=0有两个相等的实数根的概率.
3、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.
抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.
抽取的40名学生成绩分析表:
年级 | 七年级 | 八年级 |
平均分 | 8 | 8.1 |
众 数 | 8 | b |
中位数 | a | 8 |
方 差 | 1.9 | 1.89 |
请根据以上信息,解答下列问题:
(1)直接写出上表中a,b的值;
(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?
(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.
4、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.
(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;
(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.
5、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措.我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓.九年级组长将调查情况制成了如下的条形统计图和扇形统计图.请根据图中信息,回答下列问题:
(1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;
(2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;
(3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率.
-参考答案-
一、单选题
1、D
【分析】
必然事件就是一定发生的事件,根据定义即可解答.
【详解】
解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;
B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;
C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;
D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.
故选:D.
【点睛】
用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、B
【分析】
根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可.
【详解】
解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;
B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;
C、数2和8的比例中项是±4,本选项说法错误,不符合题意;
D、同一张底片洗出来的两张照片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;
故选:B.
【点睛】
本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键.
3、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
4、B
【分析】
随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.
【详解】
解:A、2021年全年有402天,是不可能事件,不符合题意;
B、4年后数学课代表会考上清华大学,是随机事件,符合题意;
C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;
D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,
故选:B.
【点睛】
本题考查随机事件,理解随机事件的概念是解答的关键.
5、C
【分析】
根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.
【详解】
解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;
B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;
C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;
D、旭日东升,是必然会发生的,不是随机事件,不符合题意;
故选C.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
6、D
【分析】
A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.
【详解】
解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;
B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;
C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;
D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;
故选D.
【点睛】
本题考察了概率.解题的关键与难点在于了解概率概念与求解.
7、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
8、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
9、B
【分析】
列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.
【详解】
解:列表如下:
| 1 | 2 |
1 | 2 | 3 |
2 | 3 | 4 |
由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,
所以两次摸出的小球的标号之和是3的概率为,
故选:B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
10、D
【分析】
根据频率估计概率逐项判断即可得.
【详解】
解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;
B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;
C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;
D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;
故选:D.
【点睛】
本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.
二、填空题
1、
【分析】
求出为负数的事件个数,进而得出 为非负数的事件个数,然后求解即可.
【详解】
解:两次取卡片共有种可能的事件;
两次取得卡片数字乘积为负数的事件为等8种可能的事件
∴为非负数共有种
∴ 为非负数的概率为
故答案为:.
【点睛】
本题考查了列举法求随机事件的概率.解题的关键在于求出事件的个数.
2、
【分析】
根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.
【详解】
解:由图可知,摸出黑球的概率约为0.2,
故答案为:0.2.
【点睛】
本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.
3、##
【分析】
先由图得出地砖的总数及黑色地砖的块数,让黑色地砖的块数除以地砖总数即可.
【详解】
解:可观察图形,黑色地砖与白色地砖的面积相等,停在黑色和白色地砖上的概率是相同的,由此可知小虫停在黑地砖上的概率为 ,
故答案为:
【点睛】
本题考查了几何概率,掌握“几何概率=相应的面积与总面积之比.”是解本题的关键.
4、
【分析】
根据题意,分,时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.
【详解】
解:当时,该方程不是一元二次方程,
当时,
解得
时,关于x的一元二次方程有实数解
随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是
故答案为:
【点睛】
本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
5、
【分析】
画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.
【详解】
解:画树状图如图:
共有12个等可能的结果,摸到的两个红球的有2种结果,
摸到的两个红球的概率是,
故答案为:.
【点睛】
本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.
三、解答题
1、
(1)摇出一红一白的概率=
(2)选择甲品牌化妆品,理由见解析
【分析】
(1)让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较即可.
(1)
解:树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
摇出一红一白的概率=;
(2)
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.
乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.
∴选择甲品牌化妆品.
【点睛】
本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1)证明见解析;(2).
【分析】
(1)把c=2b﹣1代入x2+bx+c=0.利用一元二次方程根的判别式即可得答案;
(2)根据方程x2+bx+c=0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案.
【详解】
(1)∵c=2b﹣1,
∴x2+bx+c=x2+bx+2b=0.
∵==≥0,
∴方程一定有两个实数根.
(2)∵方程x2+bx+c=0有两个相等的实数根,
∴=0,
∴,
画树状图如下:
由树状图可知:所有可能情况数为12种,符合的情况数为2种,
∴b、c的值使方程x2+bx+c=0有两个相等的实数根的概率为=.
【点睛】
本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程(),根的判别式为△=,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.
3、
(1)
(2)
(3)
【分析】
(1)根据众数和中位数的概念求解可得;
(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,
(3)根据列表法求概率即可.
(1)
根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,
根据条形统计图可知9分的有6人,人数最多,则众数为9,即
(2)
解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人
∴此次测试成绩不低于9分的学生有(人)
(3)
解:∵七年级得10分的有2人,八年级得10分的有3人
设七年级的2人分别为,八年级的3人分别
列表如下,
| |||||
| |||||
| |||||
| |||||
| |||||
|
根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟
则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为
【点睛】
本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.
4、(1);(2)4
【分析】
(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;
(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可.
【详解】
解:(1)画树状图为:
共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,
所以从袋中同时摸出的两个球都是黄球的概率==;
(2)设放入袋中的黑球的个数为x,
根据题意得
解得x=4,
所以放入袋中的黑球的个数为4.
【点睛】
本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5、
(1)50,,图见解析
(2)36
(3)
【分析】
(1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形统计图,再求出D选项所占的百分数即可求得D选项所对应的圆心角;
(2)根据家长总人数乘以D选项所占的百分数即可求解;
(3)根据(1)中求出的D选项人数可求得男女家长数,再用列表法求解即可.
(1)
解:家长总人数:11÷22%=50(人),
B选项人数:50×40%=20(人),
D选项人数:50-11-20-15=4(人),
D选项所占的百分数为4÷50=8%,
D选项所对的圆心角为360°×8%=28.8°,
答:一共调查了50名家长,选项圆心角为,补全条形统计图如图:
(2)
解:450×8%=36(人),
答:估计九年级“不知晓五项管理”举措的家长有36人;
(3)
解:D选项共4人,则男女家长各2人,从中抽取2人,画树状图为:
由图可知,一共有12种等可能的结果,其中都是男家长的有2种,
∴抽取家长都是男家长的概率是.
【点睛】
本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、用列表或画树状图法求概率,能从条形统计图和扇形统计图中获取有效信息是解答的关键.
相关试卷
这是一份2021学年第26章 概率初步综合与测试习题,共20页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份2020-2021学年第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了下列事件是必然事件的是,下列事件中是不可能事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试一课一练,共21页。试卷主要包含了下列事件中,是必然事件的是,在一个不透明的盒子中装有红球等内容,欢迎下载使用。