![2021-2022学年京改版七年级数学下册第八章因式分解章节测试练习题(精选)第1页](http://www.enxinlong.com/img-preview/2/3/12692266/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第八章因式分解章节测试练习题(精选)第2页](http://www.enxinlong.com/img-preview/2/3/12692266/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第八章因式分解章节测试练习题(精选)第3页](http://www.enxinlong.com/img-preview/2/3/12692266/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中北京课改版第八章 因式分解综合与测试练习题
展开这是一份初中北京课改版第八章 因式分解综合与测试练习题,共15页。试卷主要包含了当n为自然数时,,若x2+ax+9=,多项式分解因式的结果是,下列分解因式正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )
A.216 B.108
C.140 D.684
2、下列多项式不能用公式法因式分解的是( )
A. B. C. D.
3、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
4、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )
A.被5整除 B.被6整除 C.被7整除 D.被8整除
5、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )
A.an﹣1 B.2an C.2an﹣1 D.2an+1
6、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
7、已知a+b=2,a-b=3,则等于( )
A.5 B.6 C.1 D.
8、多项式分解因式的结果是( )
A. B.
C. D.
9、下列分解因式正确的是( )
A. B.
C. D.
10、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
2、如果,,那么代数式的值是________.
3、分解因式:________.
4、因式分解:ax2-2ax+a=_____.
5、分解因式:3a(x﹣y)+2b(y﹣x)=___.
三、解答题(5小题,每小题10分,共计50分)
1、(1)计算:x(x2y2﹣xy)÷x2y;
(2)分解因式:3bx2+6bxy+3by2.
2、因式分解
(1); (2).
3、分解因式:4xy2﹣4x2y﹣y3.
4、将下列多项式分解因式:
(1)
(2)
5、把下列各式因式分解:
(1) (2)
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.
【详解】
边长为a,b的长方形的周长为18,面积为12,
,,
故选D
【点睛】
本题考查了因式分解,代数式求值,整体代入是解题的关键.
2、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
3、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
4、D
【解析】
【分析】
先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.
【详解】
解: (n+1)2﹣(n﹣3)2
n为自然数
所以(n+1)2﹣(n﹣3)2一定能被8整除,
故选D
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.
5、C
【解析】
【分析】
根据提取公因式的方法计算即可;
【详解】
原式,
∴2an﹣1﹣4an+1的公因式是,即;
故选C.
【点睛】
本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.
6、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
7、B
【解析】
【分析】
根据平方差公式因式分解即可求解
【详解】
∵a+b=2,a-b=3,
∴
故选B
【点睛】
本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.
8、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
9、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
10、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.
【详解】
A. ,变形是整式乘法,不是因式分解,故A错误;
B. ,右边不是几个因式乘积的形式,故B错误;
C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;
D. ,变形是整式乘法,不是因式分解,故D错误.
【点睛】
本题考查因式分解的定义,掌握因式分解的定义是解题的关键.
二、填空题
1、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
2、-64
【解析】
【分析】
先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.
【详解】
解:=
=
∵,,
∴原式=2×(-4)×8
=-64,
故答案是:-64.
【点睛】
本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.
3、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
4、
【解析】
【分析】
提取公因式后,用完全平方公式因式分解即可.
【详解】
原式=
=
故答案为:.
【点睛】
本题考查了因式分解,因式分解是初中数学的重要内容之一.选择正确的分解方法是学好因式分解的关键.因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用.因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形.
5、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3a(x﹣y)+2b(y﹣x)=
故答案为:
【点睛】
本题考查了提公因式法因式分解,正确的计算是解题的关键.
三、解答题
1、(1)xy-1;(2)3b(x+y)2.
【解析】
【分析】
(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;
(2)先提取公因式3b,再利用完全平方公式继续分解即可.
【详解】
解:(1)x(x2y2﹣xy)÷x2y
=(x3y2-x2y)÷x2y
=x3y2÷x2y -x2y÷x2y
=xy-1;
(2)3bx2+6bxy+3by2
=3b(x2+2xy+y2)
=3b(x+y)2.
【点睛】
本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
2、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式分解因式即可;
(2)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.
3、-y(2x-y)2
【解析】
【分析】
先提取公因式-y,再利用完全平方公式分解因式即可得答案.
【详解】
4xy2﹣4x2y﹣y3
=-y(4x2-4xy+y2)
=-y(2x-y)2.
【点睛】
本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
4、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
5、(1);(2)
【解析】
【分析】
(1) 提取公因式,即可得到答案;
(2)先把原式化为,再提取公因式,即可得到答案 .
【详解】
(1),
原式 ;
(2) ,
原式,
.
【点睛】
本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列各因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试同步练习题,共14页。试卷主要包含了下列各式从左至右是因式分解的是,若,则E是等内容,欢迎下载使用。